Weakly Leveled Planarity with Bounded Span

Michael Bekos, Giordano Da Lozzo, Fabrizio Frati, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Ignaz Rutter, Ioannis G. Tollis
{"title":"Weakly Leveled Planarity with Bounded Span","authors":"Michael Bekos, Giordano Da Lozzo, Fabrizio Frati, Siddharth Gupta, Philipp Kindermann, Giuseppe Liotta, Ignaz Rutter, Ioannis G. Tollis","doi":"arxiv-2409.01889","DOIUrl":null,"url":null,"abstract":"This paper studies planar drawings of graphs in which each vertex is\nrepresented as a point along a sequence of horizontal lines, called levels, and\neach edge is either a horizontal segment or a strictly $y$-monotone curve. A\ngraph is $s$-span weakly leveled planar if it admits such a drawing where the\nedges have span at most $s$; the span of an edge is the number of levels it\ntouches minus one. We investigate the problem of computing $s$-span weakly\nleveled planar drawings from both the computational and the combinatorial\nperspectives. We prove the problem to be para-NP-hard with respect to its\nnatural parameter $s$ and investigate its complexity with respect to widely\nused structural parameters. We show the existence of a polynomial-size kernel\nwith respect to vertex cover number and prove that the problem is FPT when\nparameterized by treedepth. We also present upper and lower bounds on the span\nfor various graph classes. Notably, we show that cycle trees, a family of $2$-outerplanar graphs\ngeneralizing Halin graphs, are $\\Theta(\\log n)$-span weakly leveled planar and\n$4$-span weakly leveled planar when $3$-connected. As a byproduct of these\ncombinatorial results, we obtain improved bounds on the edge-length ratio of\nthe graph families under consideration.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"93 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies planar drawings of graphs in which each vertex is represented as a point along a sequence of horizontal lines, called levels, and each edge is either a horizontal segment or a strictly $y$-monotone curve. A graph is $s$-span weakly leveled planar if it admits such a drawing where the edges have span at most $s$; the span of an edge is the number of levels it touches minus one. We investigate the problem of computing $s$-span weakly leveled planar drawings from both the computational and the combinatorial perspectives. We prove the problem to be para-NP-hard with respect to its natural parameter $s$ and investigate its complexity with respect to widely used structural parameters. We show the existence of a polynomial-size kernel with respect to vertex cover number and prove that the problem is FPT when parameterized by treedepth. We also present upper and lower bounds on the span for various graph classes. Notably, we show that cycle trees, a family of $2$-outerplanar graphs generalizing Halin graphs, are $\Theta(\log n)$-span weakly leveled planar and $4$-span weakly leveled planar when $3$-connected. As a byproduct of these combinatorial results, we obtain improved bounds on the edge-length ratio of the graph families under consideration.
有界跨度的弱水平平面性
本文研究图的平面图,其中每个顶点都表示为沿水平线序列(称为水平线)的一个点,每条边都是一条水平线段或一条严格的 $y$ 单调曲线。如果图中的边的跨度最多为 $s$,那么该图就是 $s$ 跨度的弱水平平面图;边的跨度是它所接触的水平线数减去一。我们从计算和组合两个角度研究了计算跨度为 $s$ 的弱层次平面图的问题。我们证明了该问题在其自然参数 $s$ 方面的准 NP 难度,并研究了其在广泛使用的结构参数方面的复杂性。我们证明了与顶点覆盖数相关的多项式大小内核的存在,并证明了当以树深度为参数时,该问题是 FPT 问题。我们还提出了各种图类的跨度上下限。值得注意的是,我们证明了循环树--一种概括哈林图的 2 美元外平面图族--在 3 美元连接时是 $\Theta(\log n)$ 跨度的弱平整平面图和 4 美元跨度的弱平整平面图。作为这些组合结果的副产品,我们得到了所考虑的图族边长比的改进边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信