Preprocessing to Reduce the Search Space for Odd Cycle Transversal

Bart M. P. Jansen, Yosuke Mizutani, Blair D. Sullivan, Ruben F. A. Verhaegh
{"title":"Preprocessing to Reduce the Search Space for Odd Cycle Transversal","authors":"Bart M. P. Jansen, Yosuke Mizutani, Blair D. Sullivan, Ruben F. A. Verhaegh","doi":"arxiv-2409.00245","DOIUrl":null,"url":null,"abstract":"The NP-hard Odd Cycle Transversal problem asks for a minimum vertex set whose\nremoval from an undirected input graph $G$ breaks all odd cycles, and thereby\nyields a bipartite graph. The problem is well-known to be fixed-parameter\ntractable when parameterized by the size $k$ of the desired solution. It also\nadmits a randomized kernelization of polynomial size, using the celebrated\nmatroid toolkit by Kratsch and Wahlstr\\\"{o}m. The kernelization guarantees a\nreduction in the total $\\textit{size}$ of an input graph, but does not\nguarantee any decrease in the size of the solution to be sought; the latter\ngoverns the size of the search space for FPT algorithms parameterized by $k$.\nWe investigate under which conditions an efficient algorithm can detect one or\nmore vertices that belong to an optimal solution to Odd Cycle Transversal. By\ndrawing inspiration from the popular $\\textit{crown reduction}$ rule for Vertex\nCover, and the notion of $\\textit{antler decompositions}$ that was recently\nproposed for Feedback Vertex Set, we introduce a graph decomposition called\n$\\textit{tight odd cycle cut}$ that can be used to certify that a vertex set is\npart of an optimal odd cycle transversal. While it is NP-hard to compute such a\ngraph decomposition, we develop parameterized algorithms to find a set of at\nleast $k$ vertices that belong to an optimal odd cycle transversal when the\ninput contains a tight odd cycle cut certifying the membership of $k$ vertices\nin an optimal solution. The resulting algorithm formalizes when the search\nspace for the solution-size parameterization of Odd Cycle Transversal can be\nreduced by preprocessing. To obtain our results, we develop a graph reduction\nstep that can be used to simplify the graph to the point that the odd cycle cut\ncan be detected via color coding.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The NP-hard Odd Cycle Transversal problem asks for a minimum vertex set whose removal from an undirected input graph $G$ breaks all odd cycles, and thereby yields a bipartite graph. The problem is well-known to be fixed-parameter tractable when parameterized by the size $k$ of the desired solution. It also admits a randomized kernelization of polynomial size, using the celebrated matroid toolkit by Kratsch and Wahlstr\"{o}m. The kernelization guarantees a reduction in the total $\textit{size}$ of an input graph, but does not guarantee any decrease in the size of the solution to be sought; the latter governs the size of the search space for FPT algorithms parameterized by $k$. We investigate under which conditions an efficient algorithm can detect one or more vertices that belong to an optimal solution to Odd Cycle Transversal. By drawing inspiration from the popular $\textit{crown reduction}$ rule for Vertex Cover, and the notion of $\textit{antler decompositions}$ that was recently proposed for Feedback Vertex Set, we introduce a graph decomposition called $\textit{tight odd cycle cut}$ that can be used to certify that a vertex set is part of an optimal odd cycle transversal. While it is NP-hard to compute such a graph decomposition, we develop parameterized algorithms to find a set of at least $k$ vertices that belong to an optimal odd cycle transversal when the input contains a tight odd cycle cut certifying the membership of $k$ vertices in an optimal solution. The resulting algorithm formalizes when the search space for the solution-size parameterization of Odd Cycle Transversal can be reduced by preprocessing. To obtain our results, we develop a graph reduction step that can be used to simplify the graph to the point that the odd cycle cut can be detected via color coding.
减少奇数周期横向搜索空间的预处理方法
奇数循环横切问题(NP-hard Odd Cycle Transversal problem)要求找到一个最小顶点集,从一个无向输入图 $G$ 中移除该顶点集可以打破所有奇数循环,从而得到一个双方图。众所周知,当以所求解的大小 $k$ 为参数时,该问题是固定参数可解的。利用 Kratsch 和 Wahlstr\"{o}m 的著名matroid 工具包,它还可以实现多项式大小的随机内核化。内核化保证了输入图的总$\textit{size}$的减少,但并不保证所求解的大小的减少;后者决定了以$k$为参数的FPT算法的搜索空间的大小。我们研究了在哪些条件下,高效算法可以检测到一个或多个顶点属于奇数循环遍历的最优解。我们从顶点覆盖(VertexCover)中流行的$\textit{crown reduction}$规则和最近为反馈顶点集(Feedback Vertex Set)提出的$\textit{antler decompositions}$概念中汲取灵感,引入了一种称为$\textit{tight odd cycle cut}$的图分解,它可以用来证明顶点集是最优奇循环横切的一部分。虽然计算这样的图分解是 NP 难的,但我们开发了参数化算法,当输入包含证明 $k$ 顶点属于最优解的紧密奇循环切分时,可以找到至少有 $k$ 顶点属于最优奇循环横切的顶点集。由此产生的算法正式确定了何时可以通过预处理减少奇循环横切的解大小参数化搜索空间。为了得到我们的结果,我们开发了一种图形还原步骤,可以用来简化图形,使奇数循环切分可以通过颜色编码检测出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信