Fast ($\sim N$) Diffusion Map Algorithm

Julio Candanedo
{"title":"Fast ($\\sim N$) Diffusion Map Algorithm","authors":"Julio Candanedo","doi":"arxiv-2409.05901","DOIUrl":null,"url":null,"abstract":"In this work we explore parsimonious manifold learning techniques,\nspecifically for Diffusion-maps. We demonstrate an algorithm and it's\nimplementation with computational complexity (in both time and memory) of $\\sim\nN$, with $N$ representing the number-of-samples. These techniques are essential\nfor large-scale unsupervised learning tasks without any prior assumptions, due\nto sampling theorem limitations.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we explore parsimonious manifold learning techniques, specifically for Diffusion-maps. We demonstrate an algorithm and it's implementation with computational complexity (in both time and memory) of $\sim N$, with $N$ representing the number-of-samples. These techniques are essential for large-scale unsupervised learning tasks without any prior assumptions, due to sampling theorem limitations.
快速($\sim N$ )扩散图算法
在这项工作中,我们探索了流形学习技术,特别是针对扩散图的流形学习技术。我们展示了一种计算复杂度(时间和内存)为 $/simN$($N$ 代表样本数)的算法及其仿真。由于采样定理的限制,这些技术对于没有任何先验假设的大规模无监督学习任务至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信