V-Words, Lyndon Words and Galois Words

Jacqueline W. Daykin, Neerja Mhaskar, W. F. Smyth
{"title":"V-Words, Lyndon Words and Galois Words","authors":"Jacqueline W. Daykin, Neerja Mhaskar, W. F. Smyth","doi":"arxiv-2409.02757","DOIUrl":null,"url":null,"abstract":"We say that a family $\\mathcal{W}$ of strings over $\\Sigma^+$ forms a Unique\nMaximal Factorization Family (UMFF) if and only if every $w \\in \\mathcal{W}$\nhas a unique maximal factorization. Further, an UMFF $\\mathcal{W}$ is called a\ncirc-UMFF whenever it contains exactly one rotation of every primitive string\n$x \\in \\Sigma^+$. $V$-order is a non-lexicographical total ordering on strings\nthat determines a circ-UMFF. In this paper we propose a generalization of\ncirc-UMFF called the substring circ-UMFF and extend combinatorial research on\n$V$-order by investigating connections to Lyndon words. Then we extend these\nconcepts to any total order. Applications of this research arise in efficient\ntext indexing, compression, and search problems.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We say that a family $\mathcal{W}$ of strings over $\Sigma^+$ forms a Unique Maximal Factorization Family (UMFF) if and only if every $w \in \mathcal{W}$ has a unique maximal factorization. Further, an UMFF $\mathcal{W}$ is called a circ-UMFF whenever it contains exactly one rotation of every primitive string $x \in \Sigma^+$. $V$-order is a non-lexicographical total ordering on strings that determines a circ-UMFF. In this paper we propose a generalization of circ-UMFF called the substring circ-UMFF and extend combinatorial research on $V$-order by investigating connections to Lyndon words. Then we extend these concepts to any total order. Applications of this research arise in efficient text indexing, compression, and search problems.
V字词、林登字词和伽罗瓦字词
当且仅当 \mathcal{W}$ 中的每一个 $w 都有一个唯一的最大因式分解时,我们说在 $\Sigma^+$ 上的 $mathcal{W}$ 字符串族构成了一个唯一最大因式分解族(UMFF)。此外,只要一个 UMFF $\mathcal{W}$ 包含了 \Sigma^+$ 中每个基元字符串$x 的一次旋转,那么这个 UMFF $\mathcal{W}$ 就被称为循环 UMFF。在本文中,我们提出了循环-UMFF 的一般化,称为子串循环-UMFF,并通过研究与林登词的联系,扩展了关于 $V$-order 的组合研究。然后,我们将这些概念扩展到任何总阶。这项研究可应用于高效文本索引、压缩和搜索问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信