Space-Efficient Algorithm for Integer Programming with Few Constraints

Lars Rohwedder, Karol Węgrzycki
{"title":"Space-Efficient Algorithm for Integer Programming with Few Constraints","authors":"Lars Rohwedder, Karol Węgrzycki","doi":"arxiv-2409.03681","DOIUrl":null,"url":null,"abstract":"Integer linear programs $\\min\\{c^T x : A x = b, x \\in \\mathbb{Z}^n_{\\ge\n0}\\}$, where $A \\in \\mathbb{Z}^{m \\times n}$, $b \\in \\mathbb{Z}^m$, and $c \\in\n\\mathbb{Z}^n$, can be solved in pseudopolynomial time for any fixed number of\nconstraints $m = O(1)$. More precisely, in time $(m\\Delta)^{O(m)}\n\\text{poly}(I)$, where $\\Delta$ is the maximum absolute value of an entry in\n$A$ and $I$ the input size. Known algorithms rely heavily on dynamic programming, which leads to a space\ncomplexity of similar order of magnitude as the running time. In this paper, we\npresent a polynomial space algorithm that solves integer linear programs in\n$(m\\Delta)^{O(m (\\log m + \\log\\log\\Delta))} \\text{poly}(I)$ time, that is, in\nalmost the same time as previous dynamic programming algorithms.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integer linear programs $\min\{c^T x : A x = b, x \in \mathbb{Z}^n_{\ge 0}\}$, where $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, and $c \in \mathbb{Z}^n$, can be solved in pseudopolynomial time for any fixed number of constraints $m = O(1)$. More precisely, in time $(m\Delta)^{O(m)} \text{poly}(I)$, where $\Delta$ is the maximum absolute value of an entry in $A$ and $I$ the input size. Known algorithms rely heavily on dynamic programming, which leads to a space complexity of similar order of magnitude as the running time. In this paper, we present a polynomial space algorithm that solves integer linear programs in $(m\Delta)^{O(m (\log m + \log\log\Delta))} \text{poly}(I)$ time, that is, in almost the same time as previous dynamic programming algorithms.
具有少量约束条件的整数编程空间效率算法
整数线性程序 $min\{c^T x : A x = b, x \in \mathbb{Z}^n_{\ge0}\}$, 其中 $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, 和 $c \in\mathbb{Z}^n$, 可以在任意固定约束条件数量 $m = O(1)$ 的伪多项式时间内求解。更准确地说,时间为 $(m\Delta)^{O(m)}\text{poly}(I)$,其中 $\Delta$ 是 A$ 中条目最大绝对值,$I$ 是输入大小。已知算法在很大程度上依赖于动态编程,这导致空间复杂度与运行时间的数量级相近。本文提出了一种多项式空间算法,它能在$(m\Delta)^{O(m (\log m +\log\Delta))} 内求解整数线性程序。\text{poly}(I)$时间,也就是说,与之前的动态编程算法几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信