Improving the Parameter Dependency for High-Multiplicity Scheduling on Uniform Machines

Klaus Jansen, Kai Kahler, Lis Pirotton, Malte Tutas
{"title":"Improving the Parameter Dependency for High-Multiplicity Scheduling on Uniform Machines","authors":"Klaus Jansen, Kai Kahler, Lis Pirotton, Malte Tutas","doi":"arxiv-2409.04212","DOIUrl":null,"url":null,"abstract":"We address scheduling problems on uniform machines with high-multiplicity\nencoding, introducing a divide and conquer approach to assess the feasibility\nof a general Load Balancing Problem (LBP). Via reductions, our algorithm can\nalso solve the more well-known problems $Q\\|C_{\\max}$ (makespan minimization),\n$Q\\|C_{\\min}$ (santa claus) and $Q\\|C_{\\text{envy}}$ (envy minimization).\nState-of-the-art algorithms for these problems, e.g. by Knop et al. (Math.\\\nProgram.\\ '23), have running times with parameter dependency\n$p_{\\max}^{O(d^2)}$, where $p_{\\max}$ is the largest processing time and $d$ is\nthe number of different processing times. We partially answer the question\nasked by Kouteck\\'y and Zink (ISAAC'20) about whether this quadratic dependency\nof $d$ can be improved to a linear one: Under the natural assumption that the\nmachines are similar in a way that $s_{\\max}/s_{\\min} \\leq p_{\\max}^{O(1)}$ and\n$\\tau\\leq p_{\\max}^{O(1)}$, our proposed algorithm achieves parameter\ndependency $p_{\\max}^{O(d)}$ for the problems\n${Q\\|\\{C_{\\max},C_{\\min},C_{\\text{envy}}\\}}$. Here, $\\tau$ is the number of\ndistinct machine speeds. Even without this assumption, our running times\nachieve a state-of-the-art parameter dependency and do so with an entirely\ndifferent approach.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We address scheduling problems on uniform machines with high-multiplicity encoding, introducing a divide and conquer approach to assess the feasibility of a general Load Balancing Problem (LBP). Via reductions, our algorithm can also solve the more well-known problems $Q\|C_{\max}$ (makespan minimization), $Q\|C_{\min}$ (santa claus) and $Q\|C_{\text{envy}}$ (envy minimization). State-of-the-art algorithms for these problems, e.g. by Knop et al. (Math.\ Program.\ '23), have running times with parameter dependency $p_{\max}^{O(d^2)}$, where $p_{\max}$ is the largest processing time and $d$ is the number of different processing times. We partially answer the question asked by Kouteck\'y and Zink (ISAAC'20) about whether this quadratic dependency of $d$ can be improved to a linear one: Under the natural assumption that the machines are similar in a way that $s_{\max}/s_{\min} \leq p_{\max}^{O(1)}$ and $\tau\leq p_{\max}^{O(1)}$, our proposed algorithm achieves parameter dependency $p_{\max}^{O(d)}$ for the problems ${Q\|\{C_{\max},C_{\min},C_{\text{envy}}\}}$. Here, $\tau$ is the number of distinct machine speeds. Even without this assumption, our running times achieve a state-of-the-art parameter dependency and do so with an entirely different approach.
改进统一机器上高多任务调度的参数依赖性
我们采用分而治之的方法来评估一般负载均衡问题(LBP)的可行性,从而解决了具有高复数编码的统一机器上的调度问题。通过还原,我们的算法还能解决更著名的问题 $Q\|C_{\max}$(makespan minimization)、$Q\|C_{\min}$(santa claus)和 $Q\|C_{\text{envy}}$(envy minimization)。例如,Knop 等人的算法(Math.\Program.\'23)的运行时间与参数相关$p_{\max}^{O(d^2)}$,其中$p_{\max}$是最大处理时间,$d$是不同处理时间的数目。我们部分回答了 Kouteck\'y 和 Zink(ISAAC'20)提出的问题,即能否将 $d$ 的二次依赖关系改进为线性关系:在机器相似的自然假设下,即 $s_{\max}/s_{\min}\和$\tau\leq p_{/max}^{O(1)}$,我们提出的算法在问题${Q\|{C_{/max},C_{/min},C_{text/{envy}}\}$上实现了参数依赖性$p_{/max}^{O(d)}$。这里,$\tau$ 是不同机器速度的数量。即使没有这一假设,我们的运行时间也达到了最先进的参数依赖性,而且是以一种完全不同的方法实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信