Adversary Resilient Learned Bloom Filters

Allison Bishop, Hayder Tirmazi
{"title":"Adversary Resilient Learned Bloom Filters","authors":"Allison Bishop, Hayder Tirmazi","doi":"arxiv-2409.06556","DOIUrl":null,"url":null,"abstract":"Creating an adversary resilient Learned Bloom Filter\n\\cite{learnedindexstructures} with provable guarantees is an open problem\n\\cite{reviriego1}. We define a strong adversarial model for the Learned Bloom\nFilter. We also construct two adversary resilient variants of the Learned Bloom\nFilter called the Uptown Bodega Filter and the Downtown Bodega Filter. Our\nadversarial model extends an existing adversarial model designed for the\nClassical (i.e not ``Learned'') Bloom Filter by Naor Yogev~\\cite{moni1} and\nconsiders computationally bounded adversaries that run in probabilistic\npolynomial time (PPT). We show that if pseudo-random permutations exist, then a\nsecure Learned Bloom Filter may be constructed with $\\lambda$ extra bits of\nmemory and at most one extra pseudo-random permutation in the critical path. We\nfurther show that, if pseudo-random permutations exist, then a \\textit{high\nutility} Learned Bloom Filter may be constructed with $2\\lambda$ extra bits of\nmemory and at most one extra pseudo-random permutation in the critical path.\nFinally, we construct a hybrid adversarial model for the case where a fraction\nof the workload is chosen by an adversary. We show realistic scenarios where\nusing the Downtown Bodega Filter gives better performance guarantees compared\nto alternative approaches in this hybrid model.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Creating an adversary resilient Learned Bloom Filter \cite{learnedindexstructures} with provable guarantees is an open problem \cite{reviriego1}. We define a strong adversarial model for the Learned Bloom Filter. We also construct two adversary resilient variants of the Learned Bloom Filter called the Uptown Bodega Filter and the Downtown Bodega Filter. Our adversarial model extends an existing adversarial model designed for the Classical (i.e not ``Learned'') Bloom Filter by Naor Yogev~\cite{moni1} and considers computationally bounded adversaries that run in probabilistic polynomial time (PPT). We show that if pseudo-random permutations exist, then a secure Learned Bloom Filter may be constructed with $\lambda$ extra bits of memory and at most one extra pseudo-random permutation in the critical path. We further show that, if pseudo-random permutations exist, then a \textit{high utility} Learned Bloom Filter may be constructed with $2\lambda$ extra bits of memory and at most one extra pseudo-random permutation in the critical path. Finally, we construct a hybrid adversarial model for the case where a fraction of the workload is chosen by an adversary. We show realistic scenarios where using the Downtown Bodega Filter gives better performance guarantees compared to alternative approaches in this hybrid model.
抵御逆境的学习型 Bloom 过滤器
创建一个具有可证明保证的对抗性学习型布鲁姆过滤器(Learned Bloom Filter)是一个开放性问题(cite{reviriego1})。我们为学习型布鲁姆过滤器定义了一个强对抗模型。我们还构建了两种具有对抗性的学习型布鲁姆过滤器变体,分别称为上城博德加过滤器和下城博德加过滤器。我们的对抗模型扩展了Naor Yogev~cite{moni1}为经典(即非 "学习型")布隆过滤器设计的现有对抗模型,并考虑了在概率多项式时间(PPT)内运行的计算受限对抗。我们证明,如果存在伪随机排列,那么只需额外增加 $\lambda$ 位内存,并在临界路径中最多增加一个伪随机排列,就可以构造出一个安全的学习布隆过滤器。我们进一步证明,如果存在伪随机排列,那么一个 \textit{highutility} 的学习型布鲁姆过滤器可以用$2,000 美元的额外内存来构建。最后,我们构建了一个混合对抗模型,用于对抗者选择部分工作量的情况。我们展示了一些实际场景,在这些场景中,与这种混合模型中的其他方法相比,使用下城博得加滤波器能提供更好的性能保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信