FPT approximations for Capacitated Sum of Radii and Diameters

Arnold Filtser, Ameet Gadekar
{"title":"FPT approximations for Capacitated Sum of Radii and Diameters","authors":"Arnold Filtser, Ameet Gadekar","doi":"arxiv-2409.04984","DOIUrl":null,"url":null,"abstract":"The Capacitated Sum of Radii problem involves partitioning a set of points\n$P$, where each point $p\\in P$ has capacity $U_p$, into $k$ clusters that\nminimize the sum of cluster radii, such that the number of points in the\ncluster centered at point $p$ is at most $U_p$. We begin by showing that the\nproblem is APX-hard, and that under gap-ETH there is no parameterized\napproximation scheme (FPT-AS). We then construct a $\\approx5.83$-approximation\nalgorithm in FPT time (improving a previous $\\approx7.61$ approximation in FPT\ntime). Our results also hold when the objective is a general monotone symmetric\nnorm of radii. We also improve the approximation factors for the uniform\ncapacity case, and for the closely related problem of Capacitated Sum of\nDiameters.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Capacitated Sum of Radii problem involves partitioning a set of points $P$, where each point $p\in P$ has capacity $U_p$, into $k$ clusters that minimize the sum of cluster radii, such that the number of points in the cluster centered at point $p$ is at most $U_p$. We begin by showing that the problem is APX-hard, and that under gap-ETH there is no parameterized approximation scheme (FPT-AS). We then construct a $\approx5.83$-approximation algorithm in FPT time (improving a previous $\approx7.61$ approximation in FPT time). Our results also hold when the objective is a general monotone symmetric norm of radii. We also improve the approximation factors for the uniform capacity case, and for the closely related problem of Capacitated Sum of Diameters.
有容半径和直径之和的 FPT 近似值
有容量的半径之和问题涉及将一个点集$P$(P$中的每个点$p/$都有容量$U_p$)划分成$k$簇,使簇半径之和最小,从而使簇中以点$p$为中心的点的数量最多为$U_p$。我们首先证明这个问题是 APX 难问题,而且在 gap-ETH 条件下没有参数化的近似方案(FPT-AS)。然后,我们在 FPT 时间内构建了一个 $\approx5.83$ 近似算法(改进了之前在 FPT 时间内的 $\approx7.61$ 近似算法)。当目标是半径的一般单调对称规范时,我们的结果同样成立。我们还改进了均匀容积情况下的近似因子,以及与之密切相关的容积直径之和问题的近似因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信