Learning Multiple Secrets in Mastermind

Milind Prabhu, David Woodruff
{"title":"Learning Multiple Secrets in Mastermind","authors":"Milind Prabhu, David Woodruff","doi":"arxiv-2409.06453","DOIUrl":null,"url":null,"abstract":"In the Generalized Mastermind problem, there is an unknown subset $H$ of the\nhypercube $\\{0,1\\}^d$ containing $n$ points. The goal is to learn $H$ by making\na few queries to an oracle, which, given a point $q$ in $\\{0,1\\}^d$, returns\nthe point in $H$ nearest to $q$. We give a two-round adaptive algorithm for\nthis problem that learns $H$ while making at most $\\exp(\\tilde{O}(\\sqrt{d \\log\nn}))$ queries. Furthermore, we show that any $r$-round adaptive randomized\nalgorithm that learns $H$ with constant probability must make\n$\\exp(\\Omega(d^{3^{-(r-1)}}))$ queries even when the input has $\\text{poly}(d)$\npoints; thus, any $\\text{poly}(d)$ query algorithm must necessarily use\n$\\Omega(\\log \\log d)$ rounds of adaptivity. We give optimal query complexity\nbounds for the variant of the problem where queries are allowed to be from\n$\\{0,1,2\\}^d$. We also study a continuous variant of the problem in which $H$\nis a subset of unit vectors in $\\mathbb{R}^d$, and one can query unit vectors\nin $\\mathbb{R}^d$. For this setting, we give an $O(n^{d/2})$ query\ndeterministic algorithm to learn the hidden set of points.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the Generalized Mastermind problem, there is an unknown subset $H$ of the hypercube $\{0,1\}^d$ containing $n$ points. The goal is to learn $H$ by making a few queries to an oracle, which, given a point $q$ in $\{0,1\}^d$, returns the point in $H$ nearest to $q$. We give a two-round adaptive algorithm for this problem that learns $H$ while making at most $\exp(\tilde{O}(\sqrt{d \log n}))$ queries. Furthermore, we show that any $r$-round adaptive randomized algorithm that learns $H$ with constant probability must make $\exp(\Omega(d^{3^{-(r-1)}}))$ queries even when the input has $\text{poly}(d)$ points; thus, any $\text{poly}(d)$ query algorithm must necessarily use $\Omega(\log \log d)$ rounds of adaptivity. We give optimal query complexity bounds for the variant of the problem where queries are allowed to be from $\{0,1,2\}^d$. We also study a continuous variant of the problem in which $H$ is a subset of unit vectors in $\mathbb{R}^d$, and one can query unit vectors in $\mathbb{R}^d$. For this setting, we give an $O(n^{d/2})$ query deterministic algorithm to learn the hidden set of points.
在高手中学习多重秘密
在广义万事通问题中,超立方体 $\{0,1\}^d$ 的未知子集 $H$ 包含 $n$ 个点。我们的目标是通过对一个神谕进行几次查询来学习 $H$,当给定 $\{0,1}^d$ 中的一个点 $q$ 时,神谕会返回 $H$ 中离 $q$ 最近的点。我们针对这个问题给出了一种两轮自适应算法,它可以在最多进行 $\exp(\tilde{O}(\sqrt{d \logn}))$ 查询的情况下学习 $H$。此外,我们还证明,即使输入有 $\text{poly}(d)$ 点,任何以恒定概率学习 $H$ 的 $r$ 轮自适应随机算法都必须进行 $exp(\Omega(d^{3^{-(r-1)}}))$ 查询;因此,任何 $text{poly}(d)$ 查询算法都必须使用 $\Omega(\log \log d)$ 轮自适应。我们给出了允许查询来自$\{0,1,2\}^d$的问题变体的最优查询复杂度边界。我们还研究了问题的连续变体,其中 $H$ 是 $\mathbb{R}^d$ 中的单位向量子集,人们可以查询 $\mathbb{R}^d$ 中的单位向量。在这种情况下,我们给出了一种 $O(n^{d/2})$ 的精确算法来学习隐藏点集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信