Improved Hardness Results of the Cardinality-Based Minimum s-t Cut Problem in Hypergraphs

Florian Adriaens, Iiro Kumpulainen, Nikolaj Tatti
{"title":"Improved Hardness Results of the Cardinality-Based Minimum s-t Cut Problem in Hypergraphs","authors":"Florian Adriaens, Iiro Kumpulainen, Nikolaj Tatti","doi":"arxiv-2409.07201","DOIUrl":null,"url":null,"abstract":"In hypergraphs an edge that crosses a cut can be split in several ways,\ndepending on how many nodes are placed on each side of the cut. A\ncardinality-based splitting function assigns a nonnegative cost of $w_i$ for\neach cut hyperedge $e$ with exactly $i$ nodes on the side of the cut that\ncontains the minority of nodes from $e$. The cardinality-based minimum $s$-$t$\ncut aims to find an $s$-$t$ cut with minimum total cost. Assuming the costs\n$w_i$ are polynomially bounded by the input size and $w_0=0$ and $w_1=1$, we\nshow that if the costs satisfy $w_i > w_{i-j}+w_{j}$ for some $i \\in \\{2,\n\\ldots \\floor*{n/2}\\}$ and $j \\in \\{1,\\ldots,\\floor*{i/2}\\}$, then the problem\nbecomes NP-hard. Our result also holds for $k$-uniform hypergraphs with $k \\geq\n4$. Additionally, we show that the \\textsc{No-Even-Split} problem in\n$4$-uniform hypergraphs is NP-hard.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In hypergraphs an edge that crosses a cut can be split in several ways, depending on how many nodes are placed on each side of the cut. A cardinality-based splitting function assigns a nonnegative cost of $w_i$ for each cut hyperedge $e$ with exactly $i$ nodes on the side of the cut that contains the minority of nodes from $e$. The cardinality-based minimum $s$-$t$ cut aims to find an $s$-$t$ cut with minimum total cost. Assuming the costs $w_i$ are polynomially bounded by the input size and $w_0=0$ and $w_1=1$, we show that if the costs satisfy $w_i > w_{i-j}+w_{j}$ for some $i \in \{2, \ldots \floor*{n/2}\}$ and $j \in \{1,\ldots,\floor*{i/2}\}$, then the problem becomes NP-hard. Our result also holds for $k$-uniform hypergraphs with $k \geq 4$. Additionally, we show that the \textsc{No-Even-Split} problem in $4$-uniform hypergraphs is NP-hard.
基于卡的超图最小 s-t 剪切问题的改进硬度结果
在超图中,一条穿过切口的边可以有几种分割方式,这取决于切口两侧各有多少个节点。基于心数的分割函数会为每条切口超边 $e$ 分配一个非负的代价 $w_i$,切口一侧的节点数恰好为 $i$,而切口一侧包含了来自 $e$ 的少数节点。基于卡片数的最小 $s$-$t$ 切分法旨在找到总成本最小的 $s$-$t$ 切分法。假定成本 $w_i$ 与输入大小多项式有界,并且 $w_0=0$ 和 $w_1=1$,我们将证明,如果对于某个 $i \in \{2,\ldots \floor*{n/2}\}$ 和 $j \in \{1,\ldots,\floor*{i/2}\}$ 来说,成本满足 $w_i > w_{i-j}+w_{j}$ ,那么问题就会变得 NP-hard。我们的结果也适用于 $k$-uniform hypergraphs,即 $k \geq4$。此外,我们还证明了在 $$4-uniform 超图中的textsc{No-Even-Split}问题是 NP-hard。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信