Towards Instance-Optimal Euclidean Spanners

Hung Le, Shay Solomon, Cuong Than, Csaba D. Tóth, Tianyi Zhang
{"title":"Towards Instance-Optimal Euclidean Spanners","authors":"Hung Le, Shay Solomon, Cuong Than, Csaba D. Tóth, Tianyi Zhang","doi":"arxiv-2409.08227","DOIUrl":null,"url":null,"abstract":"Euclidean spanners are important geometric objects that have been extensively\nstudied since the 1980s. The two most basic \"compactness'' measures of a\nEuclidean spanner $E$ are the size (number of edges) $|E|$ and the weight (sum\nof edge weights) $\\|E\\|$. In this paper, we initiate the study of instance\noptimal Euclidean spanners. Our results are two-fold. We demonstrate that the greedy spanner is far from being instance optimal,\neven when allowing its stretch to grow. More concretely, we design two hard\ninstances of point sets in the plane, where the greedy $(1+x \\epsilon)$-spanner\n(for basically any parameter $x \\geq 1$) has $\\Omega_x(\\epsilon^{-1/2}) \\cdot\n|E_\\mathrm{spa}|$ edges and weight $\\Omega_x(\\epsilon^{-1}) \\cdot\n\\|E_\\mathrm{light}\\|$, where $E_\\mathrm{spa}$ and $E_\\mathrm{light}$ denote the\nper-instance sparsest and lightest $(1+\\epsilon)$-spanners, respectively, and\nthe $\\Omega_x$ notation suppresses a polynomial dependence on $1/x$. As our main contribution, we design a new construction of Euclidean spanners,\nwhich is inherently different from known constructions, achieving the following\nbounds: a stretch of $1+\\epsilon\\cdot 2^{O(\\log^*(d/\\epsilon))}$ with $O(1)\n\\cdot |E_\\mathrm{spa}|$ edges and weight $O(1) \\cdot \\|E_\\mathrm{light}\\|$. In\nother words, we show that a slight increase to the stretch suffices for\nobtaining instance optimality up to an absolute constant for both sparsity and\nlightness. Remarkably, there is only a log-star dependence on the dimension in\nthe stretch, and there is no dependence on it whatsoever in the number of edges\nand weight.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Euclidean spanners are important geometric objects that have been extensively studied since the 1980s. The two most basic "compactness'' measures of a Euclidean spanner $E$ are the size (number of edges) $|E|$ and the weight (sum of edge weights) $\|E\|$. In this paper, we initiate the study of instance optimal Euclidean spanners. Our results are two-fold. We demonstrate that the greedy spanner is far from being instance optimal, even when allowing its stretch to grow. More concretely, we design two hard instances of point sets in the plane, where the greedy $(1+x \epsilon)$-spanner (for basically any parameter $x \geq 1$) has $\Omega_x(\epsilon^{-1/2}) \cdot |E_\mathrm{spa}|$ edges and weight $\Omega_x(\epsilon^{-1}) \cdot \|E_\mathrm{light}\|$, where $E_\mathrm{spa}$ and $E_\mathrm{light}$ denote the per-instance sparsest and lightest $(1+\epsilon)$-spanners, respectively, and the $\Omega_x$ notation suppresses a polynomial dependence on $1/x$. As our main contribution, we design a new construction of Euclidean spanners, which is inherently different from known constructions, achieving the following bounds: a stretch of $1+\epsilon\cdot 2^{O(\log^*(d/\epsilon))}$ with $O(1) \cdot |E_\mathrm{spa}|$ edges and weight $O(1) \cdot \|E_\mathrm{light}\|$. In other words, we show that a slight increase to the stretch suffices for obtaining instance optimality up to an absolute constant for both sparsity and lightness. Remarkably, there is only a log-star dependence on the dimension in the stretch, and there is no dependence on it whatsoever in the number of edges and weight.
实现实例最优欧几里得跨度
欧几里得旋转器是重要的几何对象,自 20 世纪 80 年代以来已被广泛研究。欧几里得跨度 $E$ 的两个最基本的 "紧凑性''度量是大小(边的数量)$|E|$ 和权重(边的权重总和)$\|E\|$。在本文中,我们开始研究实例最优欧几里得跨度。我们的结果有两个方面。我们证明,即使允许其伸展性增长,贪婪的跨接器也远非实例最优。更具体地说,我们设计了两个平面上点集的困难实例,其中贪婪的 $(1+x \epsilon)$ spanner(对于基本任意参数 $x \geq 1$)具有 $\Omega_x(\epsilon^{-1/2}) \cdot|E_\mathrm{spa}|$ 边和权重 $\Omega_x(\epsilon^{-1}) \cdot\|E_\mathrm{light}\|$ 、其中,$E_\mathrm{spa}$ 和 $E_\mathrm{light}$分别表示每个实例中最稀疏和最轻的 $(1+\epsilon)$扫描器,$\Omega_x$符号抑制了对$1/x$的多项式依赖。作为我们的主要贡献,我们设计了一种新的欧几里得跨度构造,它与已知构造有本质区别,实现了以下边界:1+epsilon/cdot 2^{O(\log^*(d/\epsilon))}$ 的拉伸,具有 $O(1)\cdot |E_\mathrm{spa}|$边和权重 $O(1)\cdot \|E_\mathrm{light}|$。换句话说,我们证明了在稀疏性和亮度方面,只要稍微增加伸展度,就足以获得实例的最优性,其绝对值可达一个常数。值得注意的是,拉伸维度只与对数星级相关,而在边的数量和权重上与之完全无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信