Fine-Grained Complexity of Multiple Domination and Dominating Patterns in Sparse Graphs

Marvin Künnemann, Mirza Redzic
{"title":"Fine-Grained Complexity of Multiple Domination and Dominating Patterns in Sparse Graphs","authors":"Marvin Künnemann, Mirza Redzic","doi":"arxiv-2409.08037","DOIUrl":null,"url":null,"abstract":"The study of domination in graphs has led to a variety of domination problems\nstudied in the literature. Most of these follow the following general\nframework: Given a graph $G$ and an integer $k$, decide if there is a set $S$\nof $k$ vertices such that (1) some inner property $\\phi(S)$ (e.g.,\nconnectedness) is satisfied, and (2) each vertex $v$ satisfies some domination\nproperty $\\rho(S, v)$ (e.g., there is an $s\\in S$ that is adjacent to $v$). Since many real-world graphs are sparse, we seek to determine the optimal\nrunning time of such problems in both the number $n$ of vertices and the number\n$m$ of edges in $G$. While the classic dominating set problem admits a rather\nlimited improvement in sparse graphs (Fischer, K\\\"unnemann, Redzic SODA'24), we\nshow that natural variants studied in the literature admit much larger\nspeed-ups, with a diverse set of possible running times. Specifically, we\nobtain conditionally optimal algorithms for: 1) $r$-Multiple $k$-Dominating Set (each vertex must be adjacent to at least\n$r$ vertices in $S$): If $r\\le k-2$, we obtain a running time of $(m/n)^{r}\nn^{k-r+o(1)}$ that is conditionally optimal assuming the 3-uniform hyperclique\nhypothesis. In sparse graphs, this fully interpolates between $n^{k-1\\pm o(1)}$\nand $n^{2\\pm o(1)}$, depending on $r$. Curiously, when $r=k-1$, we obtain a\nrandomized algorithm beating $(m/n)^{k-1} n^{1+o(1)}$ and we show that this\nalgorithm is close to optimal under the $k$-clique hypothesis. 2) $H$-Dominating Set ($S$ must induce a pattern $H$). We conditionally\nsettle the complexity of three such problems: (a) Dominating Clique ($H$ is a\n$k$-clique), (b) Maximal Independent Set of size $k$ ($H$ is an independent set\non $k$ vertices), (c) Dominating Induced Matching ($H$ is a perfect matching on\n$k$ vertices).","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of domination in graphs has led to a variety of domination problems studied in the literature. Most of these follow the following general framework: Given a graph $G$ and an integer $k$, decide if there is a set $S$ of $k$ vertices such that (1) some inner property $\phi(S)$ (e.g., connectedness) is satisfied, and (2) each vertex $v$ satisfies some domination property $\rho(S, v)$ (e.g., there is an $s\in S$ that is adjacent to $v$). Since many real-world graphs are sparse, we seek to determine the optimal running time of such problems in both the number $n$ of vertices and the number $m$ of edges in $G$. While the classic dominating set problem admits a rather limited improvement in sparse graphs (Fischer, K\"unnemann, Redzic SODA'24), we show that natural variants studied in the literature admit much larger speed-ups, with a diverse set of possible running times. Specifically, we obtain conditionally optimal algorithms for: 1) $r$-Multiple $k$-Dominating Set (each vertex must be adjacent to at least $r$ vertices in $S$): If $r\le k-2$, we obtain a running time of $(m/n)^{r} n^{k-r+o(1)}$ that is conditionally optimal assuming the 3-uniform hyperclique hypothesis. In sparse graphs, this fully interpolates between $n^{k-1\pm o(1)}$ and $n^{2\pm o(1)}$, depending on $r$. Curiously, when $r=k-1$, we obtain a randomized algorithm beating $(m/n)^{k-1} n^{1+o(1)}$ and we show that this algorithm is close to optimal under the $k$-clique hypothesis. 2) $H$-Dominating Set ($S$ must induce a pattern $H$). We conditionally settle the complexity of three such problems: (a) Dominating Clique ($H$ is a $k$-clique), (b) Maximal Independent Set of size $k$ ($H$ is an independent set on $k$ vertices), (c) Dominating Induced Matching ($H$ is a perfect matching on $k$ vertices).
稀疏图中多重支配和支配模式的精细复杂性
图中支配的研究导致了文献中研究的各种支配问题。这些问题大多遵循以下一般框架:给定一个图 $G$ 和一个整数 $k$,判断是否存在一个由 $k$ 个顶点组成的集合 $S$,使得 (1) 某些内部属性 $\phi(S)$(例如连通性)得到满足,并且 (2) 每个顶点 $v$ 都满足某些支配属性 $\rho(S,v)$(例如,S$ 中有一个 $s\ 与 $v$ 相邻)。由于现实世界中的许多图都很稀疏,因此我们试图确定这类问题在顶点数 $n$ 和边数 $m$ 的情况下的最佳运行时间。经典的支配集问题在稀疏图中的改进相当有限(Fischer, K\"unnemann, Redzic SODA'24),而我们的研究表明,文献中研究的自然变体允许更大的提速,而且可能的运行时间也多种多样。具体来说,我们获得了以下方面的条件最优算法:1) $r$ 多 $k$ 优势集(每个顶点必须至少与 $S$ 中的 $r$ 顶点相邻):如果 $r\le k-2$,我们会得到一个运行时间为 $(m/n)^{r}n^{k-r+o(1)}$的运行时间,它是假设 3-uniform hypercliquehypothesis 的条件最优时间。在稀疏图中,这完全介于 $n^{k-1\pm o(1)}$ 和 $n^{2\pm o(1)}$ 之间,取决于 $r$。奇怪的是,当 $r=k-1$ 时,我们得到了随机化算法跳动 $(m/n)^{k-1} n^{1+o(1)}$,并证明在 $k$-clique 假设下,该算法接近最优。2) $H$ 主导集($S$ 必须诱导一个模式 $H$)。我们有条件地确定了三个此类问题的复杂性:(a) 支配簇($H$ 是一个 $k$-clique ),(b) 大小为 $k$ 的最大独立集($H$ 是一个在 $k$ 顶点上的独立集),(c) 支配诱导匹配($H$ 是一个在 $k$ 顶点上的完美匹配)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信