Natalie Behague, Natasha Morrison, Jonathan A. Noel
{"title":"Off-Diagonal Commonality of Graphs via Entropy","authors":"Natalie Behague, Natasha Morrison, Jonathan A. Noel","doi":"10.1137/23m1625342","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2335-2360, September 2024. <br/> Abstract. A graph [math] is common if the limit as [math] of the minimum density of monochromatic labeled copies of [math] in an edge coloring of [math] with red and blue is attained by a sequence of quasirandom colorings. We apply an information-theoretic approach to show that certain graphs obtained from odd cycles and paths via gluing operations are common. In fact, for every pair [math] of such graphs, there exists [math] such that an appropriate linear combination of red copies of [math] and blue copies of [math] is minimized by a quasirandom coloring in which [math] edges are red; such a pair [math] is said to be [math]-common. Our approach exploits a strengthening of the common graph property for odd cycles that was recently proved using Schur convexity. We also exhibit a [math]-common pair [math] such that [math] is uncommon.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":"43 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1625342","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Discrete Mathematics, Volume 38, Issue 3, Page 2335-2360, September 2024. Abstract. A graph [math] is common if the limit as [math] of the minimum density of monochromatic labeled copies of [math] in an edge coloring of [math] with red and blue is attained by a sequence of quasirandom colorings. We apply an information-theoretic approach to show that certain graphs obtained from odd cycles and paths via gluing operations are common. In fact, for every pair [math] of such graphs, there exists [math] such that an appropriate linear combination of red copies of [math] and blue copies of [math] is minimized by a quasirandom coloring in which [math] edges are red; such a pair [math] is said to be [math]-common. Our approach exploits a strengthening of the common graph property for odd cycles that was recently proved using Schur convexity. We also exhibit a [math]-common pair [math] such that [math] is uncommon.
期刊介绍:
SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution.
Topics include but are not limited to:
properties of and extremal problems for discrete structures
combinatorial optimization, including approximation algorithms
algebraic and enumerative combinatorics
coding and information theory
additive, analytic combinatorics and number theory
combinatorial matrix theory and spectral graph theory
design and analysis of algorithms for discrete structures
discrete problems in computational complexity
discrete and computational geometry
discrete methods in computational biology, and bioinformatics
probabilistic methods and randomized algorithms.