Quantum Information Resources in Spin-1 Heisenberg Dimer Systems

Fadwa Benabdallah, M. Y. Abd-Rabbou, Mohammed Daoud, Saeed Haddadi
{"title":"Quantum Information Resources in Spin-1 Heisenberg Dimer Systems","authors":"Fadwa Benabdallah, M. Y. Abd-Rabbou, Mohammed Daoud, Saeed Haddadi","doi":"arxiv-2409.08082","DOIUrl":null,"url":null,"abstract":"We explore the quantum information resources within bipartite pure and mixed\nstates of the quantum spin-1 Heisenberg dimer system, considering some\ninteresting factors such as the $l_{1}$-norm of quantum coherence, relative\ncoherence, entanglement, and steering, influenced by the magnetic field and\nuniaxial single-ion anisotropy. Through a thorough investigation, we derive the\nsystem's density operator at thermal equilibrium and establish a mathematical\nframework for analyzing quantum correlation metrics. Our results unveil the\nsystem's behavior at absolute zero temperature, revealing quantum\nantiferromagnetic, ferromagnetic, and ferrimagnetic phase transitions governed\nby the magnetic field and anisotropy parameters. We further observe\ntemperature's role in transitioning the system towards classical states,\nimpacting coherence, entanglement, and steering differently. Notably, we find\nthat increasing the exchange anisotropy parameter can reinforce quantum\ncorrelations while adjusting the uniaxial single-ion anisotropy parameter\ninfluences the system's quantumness, particularly when positive. Some\nrecommendations to maximize quantum coherence, entanglement, and steering\ninvolve temperature reduction, increasing the exchange anisotropy parameter,\nand carefully managing the magnetic field and uniaxial single-ion anisotropy\nparameter, highlighting the intricate interplay between these factors in\nmaintaining the system's quantum properties.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system, considering some interesting factors such as the $l_{1}$-norm of quantum coherence, relative coherence, entanglement, and steering, influenced by the magnetic field and uniaxial single-ion anisotropy. Through a thorough investigation, we derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum correlation metrics. Our results unveil the system's behavior at absolute zero temperature, revealing quantum antiferromagnetic, ferromagnetic, and ferrimagnetic phase transitions governed by the magnetic field and anisotropy parameters. We further observe temperature's role in transitioning the system towards classical states, impacting coherence, entanglement, and steering differently. Notably, we find that increasing the exchange anisotropy parameter can reinforce quantum correlations while adjusting the uniaxial single-ion anisotropy parameter influences the system's quantumness, particularly when positive. Some recommendations to maximize quantum coherence, entanglement, and steering involve temperature reduction, increasing the exchange anisotropy parameter, and carefully managing the magnetic field and uniaxial single-ion anisotropy parameter, highlighting the intricate interplay between these factors in maintaining the system's quantum properties.
自旋-1 海森堡二聚体系统中的量子信息资源
我们探讨了量子自旋-1 海森堡二聚体系统的二元纯态和混合态中的量子信息资源,考虑了一些有趣的因素,如量子相干性的 $l_{1}$正态、相对相干性、纠缠和转向,这些因素受到磁场和单轴单离子各向异性的影响。通过深入研究,我们得出了该系统在热平衡时的密度算子,并建立了分析量子相关度量的数学框架。我们的研究结果揭示了该系统在绝对零度下的行为,揭示了受磁场和各向异性参数支配的量子反铁磁、铁磁和铁磁相变。我们进一步观察到温度在系统向经典态过渡时的作用,它对相干性、纠缠和转向的影响各不相同。值得注意的是,我们发现增加交换各向异性参数可以加强量子相关性,而调整单轴单离子各向异性参数则会影响系统的量子性,尤其是在正值时。要最大限度地提高量子相干性、纠缠性和转向性,一些建议包括降低温度、增加交换各向异性参数,以及仔细管理磁场和单轴单离子各向异性参数,这凸显了这些因素在维持系统量子特性方面错综复杂的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信