Raffaele R. Severino, Michele Spasaro, Domenico Zito
{"title":"Silicon Spin Qubit Control and Readout Circuits in 22nm FDSOI CMOS","authors":"Raffaele R. Severino, Michele Spasaro, Domenico Zito","doi":"arxiv-2409.08182","DOIUrl":null,"url":null,"abstract":"This paper investigates the implementation of microwave and mm-wave\nintegrated circuits for control and readout of electron/hole spin qubits, as\nelementary building blocks for future emerging quantum computing technologies.\nIn particular, it summarizes the most relevant readout and control techniques\nof electron/hole spin qubits, addresses the feasibility and reports some\npreliminary simulation results of two blocks: transimpedance amplifier (TIA)\nand pulse generator (PG). The TIA exhibits a transimpedance gain of 108.5 dB\nOhm over a -3dB bandwidth of 18 GHz, with input-referred noise current spectral\ndensity of 0.89 pA/root(Hz) at 10 GHz. The PG provides a mm-wave sinusoidal\npulse with a minimum duration time of 20 ps.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the implementation of microwave and mm-wave
integrated circuits for control and readout of electron/hole spin qubits, as
elementary building blocks for future emerging quantum computing technologies.
In particular, it summarizes the most relevant readout and control techniques
of electron/hole spin qubits, addresses the feasibility and reports some
preliminary simulation results of two blocks: transimpedance amplifier (TIA)
and pulse generator (PG). The TIA exhibits a transimpedance gain of 108.5 dB
Ohm over a -3dB bandwidth of 18 GHz, with input-referred noise current spectral
density of 0.89 pA/root(Hz) at 10 GHz. The PG provides a mm-wave sinusoidal
pulse with a minimum duration time of 20 ps.