Faster Algorithmic Quantum and Classical Simulations by Corrected Product Formulas

Mohsen Bagherimehrab, Dominic W. Berry, Philipp Schleich, Abdulrahman Aldossary, Jorge A. Campos Gonzalez Angulo, Alan Aspuru-Guzik
{"title":"Faster Algorithmic Quantum and Classical Simulations by Corrected Product Formulas","authors":"Mohsen Bagherimehrab, Dominic W. Berry, Philipp Schleich, Abdulrahman Aldossary, Jorge A. Campos Gonzalez Angulo, Alan Aspuru-Guzik","doi":"arxiv-2409.08265","DOIUrl":null,"url":null,"abstract":"Hamiltonian simulation using product formulas is arguably the most\nstraightforward and practical approach for algorithmic simulation of a quantum\nsystem's dynamics on a quantum computer. Here we present corrected product\nformulas (CPFs), a variation of product formulas achieved by injecting\nauxiliary terms called correctors into standard product formulas. We establish\nseveral correctors that greatly improve the accuracy of standard product\nformulas for simulating Hamiltonians comprised of two partitions that can be\nexactly simulated, a common feature of lattice Hamiltonians, while only adding\na small additive or multiplicative factor to the simulation cost. We show that\ncorrectors are particularly advantageous for perturbed systems, where one\npartition has a relatively small norm compared to the other, as they allow the\nsmall norm to be utilized as an additional parameter for controlling the\nsimulation error. We demonstrate the performance of CPFs by numerical\nsimulations for several lattice Hamiltonians. Numerical results show our\ntheoretical error bound for CPFs matches or exceeds the empirical error of\nstandard product formulas for these systems. CPFs could be a valuable\nalgorithmic tool for early fault-tolerant quantum computers with limited\ncomputing resources. As for standard product formulas, CPFs could also be used\nfor simulations on a classical computer.","PeriodicalId":501226,"journal":{"name":"arXiv - PHYS - Quantum Physics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hamiltonian simulation using product formulas is arguably the most straightforward and practical approach for algorithmic simulation of a quantum system's dynamics on a quantum computer. Here we present corrected product formulas (CPFs), a variation of product formulas achieved by injecting auxiliary terms called correctors into standard product formulas. We establish several correctors that greatly improve the accuracy of standard product formulas for simulating Hamiltonians comprised of two partitions that can be exactly simulated, a common feature of lattice Hamiltonians, while only adding a small additive or multiplicative factor to the simulation cost. We show that correctors are particularly advantageous for perturbed systems, where one partition has a relatively small norm compared to the other, as they allow the small norm to be utilized as an additional parameter for controlling the simulation error. We demonstrate the performance of CPFs by numerical simulations for several lattice Hamiltonians. Numerical results show our theoretical error bound for CPFs matches or exceeds the empirical error of standard product formulas for these systems. CPFs could be a valuable algorithmic tool for early fault-tolerant quantum computers with limited computing resources. As for standard product formulas, CPFs could also be used for simulations on a classical computer.
通过修正乘积公式实现更快的算法量子和经典模拟
使用乘积公式进行哈密顿模拟可以说是在量子计算机上对量子系统动力学进行算法模拟的最直接、最实用的方法。在这里,我们提出了修正积公式(CPFs),它是积公式的一种变体,通过在标准积公式中注入称为修正器的辅助项来实现。我们建立了几种校正器,它们大大提高了标准乘积公式在模拟由两个分区组成的哈密顿时的准确性,而这两个分区可以被精确模拟,这是晶格哈密顿的一个共同特征,同时只给模拟成本增加了很小的加法或乘法因子。我们的研究表明,校正器对于扰动系统尤其有利,因为扰动系统中的一个分区与另一个分区相比具有相对较小的规范,而校正器允许将小规范作为控制模拟误差的附加参数。我们通过对几个晶格哈密顿的数值模拟,证明了 CPF 的性能。数值结果表明,我们的 CPF 理论误差边界与这些系统的标准乘积公式的经验误差相匹配,甚至超过。对于计算资源有限的早期容错量子计算机来说,CPF 可能是一个有价值的算法工具。与标准乘积公式一样,CPF 也可用于在经典计算机上进行模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信