Symplectic Reduction in Infinite Dimensions

Tobias Diez, Gerd Rudolph
{"title":"Symplectic Reduction in Infinite Dimensions","authors":"Tobias Diez, Gerd Rudolph","doi":"arxiv-2409.05829","DOIUrl":null,"url":null,"abstract":"This paper develops a theory of symplectic reduction in the\ninfinite-dimensional setting, covering both the regular and singular case.\nExtending the classical work of Marsden, Weinstein, Sjamaar and Lerman, we\naddress challenges unique to infinite dimensions, such as the failure of the\nDarboux theorem and the absence of the Marle-Guillemin-Sternberg normal form.\nOur novel approach centers on a normal form of only the momentum map, for which\nwe utilize new local normal form theorems for smooth equivariant maps in the\ninfinite-dimensional setting. This normal form is then used to formulate the\ntheory of singular symplectic reduction in infinite dimensions. We apply our\nresults to important examples like the Yang-Mills equation and the\nTeichm\\\"uller space over a Riemann surface.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a theory of symplectic reduction in the infinite-dimensional setting, covering both the regular and singular case. Extending the classical work of Marsden, Weinstein, Sjamaar and Lerman, we address challenges unique to infinite dimensions, such as the failure of the Darboux theorem and the absence of the Marle-Guillemin-Sternberg normal form. Our novel approach centers on a normal form of only the momentum map, for which we utilize new local normal form theorems for smooth equivariant maps in the infinite-dimensional setting. This normal form is then used to formulate the theory of singular symplectic reduction in infinite dimensions. We apply our results to important examples like the Yang-Mills equation and the Teichm\"uller space over a Riemann surface.
无限维的交映还原
本文发展了无限维背景下的交映还原理论,涵盖了正则和奇异两种情况。我们扩展了马斯登(Marsden)、韦恩斯坦(Weinstein)、斯亚马尔(Sjamaar)和勒曼(Lerman)的经典工作,解决了无限维所特有的挑战,如达尔布(Darboux)定理的失效和马勒-吉列明-斯特恩伯格(Marle-Guillemin-Sternberg)正则形式的缺失。我们的新方法以动量映射的正则形式为中心,为此我们利用了无限维背景下光滑等变映射的新局部正则形式定理。然后,我们利用这种正形式来阐述无限维中的奇异交映还原理论。我们将我们的结果应用于一些重要的例子,如杨-米尔斯方程和黎曼曲面上的泰克姆(Teichm\"uller )空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信