Positive microlocal holonomies are globally regular

Roger Casals, Wenyuan Li
{"title":"Positive microlocal holonomies are globally regular","authors":"Roger Casals, Wenyuan Li","doi":"arxiv-2409.07435","DOIUrl":null,"url":null,"abstract":"We establish a geometric criterion for local microlocal holonomies to be\nglobally regular on the moduli space of Lagrangian fillings. This\nlocal-to-global regularity result holds for arbitrary Legendrian links and it\nis a key input for the study of cluster structures on such moduli spaces.\nSpecifically, we construct regular functions on derived moduli stacks of\nsheaves with Legendrian microsupport by studying the Hochschild homology of the\nassociated dg-categories via relative Lagrangian skeleta. In this construction,\na key geometric result is that local microlocal merodromies along positive\nrelative cycles in Lagrangian fillings yield global Hochschild 0-cycles for\nthese dg-categories.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish a geometric criterion for local microlocal holonomies to be globally regular on the moduli space of Lagrangian fillings. This local-to-global regularity result holds for arbitrary Legendrian links and it is a key input for the study of cluster structures on such moduli spaces. Specifically, we construct regular functions on derived moduli stacks of sheaves with Legendrian microsupport by studying the Hochschild homology of the associated dg-categories via relative Lagrangian skeleta. In this construction, a key geometric result is that local microlocal merodromies along positive relative cycles in Lagrangian fillings yield global Hochschild 0-cycles for these dg-categories.
积极的微观局部整体性具有全球规律性
我们为局部微局部全局性在拉格朗日填充模量空间上开始全局正则性建立了一个几何标准。具体地说,我们通过相对拉格朗日骨架研究相关 dg 范畴的霍赫希尔德同调,在具有拉格朗日微支撑的舍弗勒派生模数堆上构造正则函数。在这一构造中,一个关键的几何结果是,沿着拉格朗日填充中的正相对循环的局部微局域子午流产生了这些 dg 范畴的全局霍赫希尔德 0 循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信