Circle Foliations Revisited: Periods of Flows whose Orbits are all Closed

Yoshihisa Miyanishi
{"title":"Circle Foliations Revisited: Periods of Flows whose Orbits are all Closed","authors":"Yoshihisa Miyanishi","doi":"arxiv-2408.06056","DOIUrl":null,"url":null,"abstract":"Our purpose here is to adapt the results of Geodesic circle foliations for\nReeb flows or Hamiltonian flows on contact manifolds. Consequently, all periods\nare exactly the same if the contact manifold is connected and all orbits on the\ncontact manifold are closed. We also present concrete examples of periodic\nflows, all of whose orbits are closed, such as Harmonic oscillators,\nLotka-Volterra systems, and others. Lotka-Volterra systems, Reeb flows, and\nsome geodesic flows have non-trivial periods, whereas the periods of Harmonic\noscillators and similar systems can be easily obtained through direct\ncalculations. As an application to quantum mechanics, we examine the spectrum\nof semiclassical Shr\\\"odinger operators. Then we have one of the semiclassical\nanalogies of the Helton-Guillemin theorem.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our purpose here is to adapt the results of Geodesic circle foliations for Reeb flows or Hamiltonian flows on contact manifolds. Consequently, all periods are exactly the same if the contact manifold is connected and all orbits on the contact manifold are closed. We also present concrete examples of periodic flows, all of whose orbits are closed, such as Harmonic oscillators, Lotka-Volterra systems, and others. Lotka-Volterra systems, Reeb flows, and some geodesic flows have non-trivial periods, whereas the periods of Harmonic oscillators and similar systems can be easily obtained through direct calculations. As an application to quantum mechanics, we examine the spectrum of semiclassical Shr\"odinger operators. Then we have one of the semiclassical analogies of the Helton-Guillemin theorem.
圆叶再探:轨道全部闭合的流动周期
我们在这里的目的是将大地圆叶型的结果应用于接触流形上的里布流或哈密顿流。因此,如果接触流形是连通的,并且接触流形上的所有轨道都是闭合的,那么所有周期都是完全相同的。我们还举例说明了所有轨道都是闭合的周期流,如谐波振荡器、Lotka-Volterra 系统等。Lotka-Volterra系统、Reeb流和一些大地流具有非三维周期,而谐振子和类似系统的周期可以通过直接计算轻松获得。作为量子力学的一个应用,我们研究了半经典薛定谔算子的频谱。然后,我们就有了海尔顿-吉列明定理的一个半经典类比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信