Symplectic annular Khovanov homology and fixed point localizations

Kristen Hendricks, Cheuk Yu Mak, Sriram Raghunath
{"title":"Symplectic annular Khovanov homology and fixed point localizations","authors":"Kristen Hendricks, Cheuk Yu Mak, Sriram Raghunath","doi":"arxiv-2408.06453","DOIUrl":null,"url":null,"abstract":"We introduce a new version of symplectic annular Khovanov homology and\nestablish spectral sequences from (i) the symplectic annular Khovanov homology\nof a knot to the link Floer homology of the lift of the annular axis in the\ndouble branched cover; (ii) the symplectic Khovanov homology of a two-periodic\nknot to the symplectic annular Khovanov homology of its quotient; and (iii) the\nsymplectic Khovanov homology of a strongly invertible knot to the cone of the\naxis-moving map between the symplectic annular Khovanov homology of the two\nresolutions of its quotient.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a new version of symplectic annular Khovanov homology and establish spectral sequences from (i) the symplectic annular Khovanov homology of a knot to the link Floer homology of the lift of the annular axis in the double branched cover; (ii) the symplectic Khovanov homology of a two-periodic knot to the symplectic annular Khovanov homology of its quotient; and (iii) the symplectic Khovanov homology of a strongly invertible knot to the cone of the axis-moving map between the symplectic annular Khovanov homology of the two resolutions of its quotient.
交映环科瓦诺夫同调与定点定位
我们引入了新版本的交映环状 Khovanov 同源性,并建立了从 (i) 结的交映环状 Khovanov 同源性到双支盖中环状轴的提升的链接 Floer 同源性的谱序列;(iii) 强可逆结的交映 Khovanov 同源性到其商的两个解的交映环形 Khovanov 同源性之间的轴移动映射锥。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信