An $L_\infty$ structure on symplectic cohomology

Matthew Strom Borman, Mohamed El Alami, Nick Sheridan
{"title":"An $L_\\infty$ structure on symplectic cohomology","authors":"Matthew Strom Borman, Mohamed El Alami, Nick Sheridan","doi":"arxiv-2408.09163","DOIUrl":null,"url":null,"abstract":"We construct the $L_\\infty$ structure on symplectic cohomology of a Liouville\ndomain, together with an enhancement of the closed--open map to an $L_\\infty$\nhomomorphism from symplectic cochains to Hochschild cochains on the wrapped\nFukaya category. Features of our construction are that it respects a modified\naction filtration (in contrast to Pomerleano--Seidel's construction); it uses a\ncompact telescope model (in contrast to Abouzaid--Groman--Varolgunes'\nconstruction); and it is adapted to the purposes of our follow-up work where we\nconstruct Maurer--Cartan elements in symplectic cochains which are associated\nto a normal-crossings compactification of the Liouville domain.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct the $L_\infty$ structure on symplectic cohomology of a Liouville domain, together with an enhancement of the closed--open map to an $L_\infty$ homomorphism from symplectic cochains to Hochschild cochains on the wrapped Fukaya category. Features of our construction are that it respects a modified action filtration (in contrast to Pomerleano--Seidel's construction); it uses a compact telescope model (in contrast to Abouzaid--Groman--Varolgunes' construction); and it is adapted to the purposes of our follow-up work where we construct Maurer--Cartan elements in symplectic cochains which are associated to a normal-crossings compactification of the Liouville domain.
交映同调上的 $L_\infty$ 结构
我们构建了Liouvilledomain的交映同调上的$L_\infty$结构,以及在wrappedFukaya范畴上从交映共链到霍赫希尔德共链的$L_\infty$同态的闭开映射的增强。我们的构造的特点是:它尊重修正的作用滤波(与波默莱亚诺--塞德尔的构造相反);它使用了一个紧凑的望远镜模型(与阿布扎伊德--格罗曼--瓦罗贡斯的构造相反);它适应于我们后续工作的目的,在我们的后续工作中,我们在交映共链中构造了毛勒--卡尔坦元素,这些元素与柳维尔域的法线交叉紧凑化相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信