From curve shortening to flat link stability and Birkhoff sections of geodesic flows

Marcelo R. R. Alves, Marco Mazzucchelli
{"title":"From curve shortening to flat link stability and Birkhoff sections of geodesic flows","authors":"Marcelo R. R. Alves, Marco Mazzucchelli","doi":"arxiv-2408.11938","DOIUrl":null,"url":null,"abstract":"We employ the curve shortening flow to establish three new theorems on the\ndynamics of geodesic flows of closed Riemannian surfaces. The first one is the\nstability, under $C^0$-small perturbations of the Riemannian metric, of certain\nflat links of closed geodesics. The second one is a forced existence theorem\nfor orientable closed Riemannian surfaces of positive genus, asserting that the\nexistence of a contractible simple closed geodesic $\\gamma$ forces the\nexistence of infinitely many closed geodesics intersecting $\\gamma$ in every\nprimitive free homotopy class of loops. The third theorem asserts the existence\nof Birkhoff sections for the geodesic flow of any closed orientable Riemannian\nsurface of positive genus.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We employ the curve shortening flow to establish three new theorems on the dynamics of geodesic flows of closed Riemannian surfaces. The first one is the stability, under $C^0$-small perturbations of the Riemannian metric, of certain flat links of closed geodesics. The second one is a forced existence theorem for orientable closed Riemannian surfaces of positive genus, asserting that the existence of a contractible simple closed geodesic $\gamma$ forces the existence of infinitely many closed geodesics intersecting $\gamma$ in every primitive free homotopy class of loops. The third theorem asserts the existence of Birkhoff sections for the geodesic flow of any closed orientable Riemannian surface of positive genus.
从曲线缩短到平链稳定性和大地流的伯克霍夫截面
我们利用曲线缩短流建立了关于闭合黎曼曲面的大地流动力学的三个新定理。第一个定理是在黎曼度量的 $C^0$ 小扰动下,闭合大地线的某些扁平链接的稳定性。第二个定理是关于正属的可定向封闭黎曼曲面的强制存在定理,它断言一个可收缩的简单封闭大地线 $\gamma$ 的存在强制了在每一个原始的自由同构环类中与 $\gamma$ 相交的无限多封闭大地线的存在。第三个定理断言任何正属的闭可定向黎曼曲面的大地流都存在伯克霍夫截面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信