Superheavy Skeleta for non-Normal Crossings Divisors

Elliot Gathercole
{"title":"Superheavy Skeleta for non-Normal Crossings Divisors","authors":"Elliot Gathercole","doi":"arxiv-2408.13187","DOIUrl":null,"url":null,"abstract":"Given an anticanonical divisor in a projective variety, one naturally obtains\na monotone K\\\"ahler manifold. In this paper, for divisors in a certain class\n(larger than normal crossings), we construct smoothing families of contact\nhypersurfaces with controlled Reeb dynamics. We use these to adapt arguments of\nBorman, Sheridan and Varolgunes to obtain analogous results about symplectic\ncohomology with supports in the divisor complement. In particular, we will show\nthat several examples of Lagrangian skeleta of such divisor complements are\nsuperheavy, in cases where applying Lagrangian Floer theory may be intractable.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given an anticanonical divisor in a projective variety, one naturally obtains a monotone K\"ahler manifold. In this paper, for divisors in a certain class (larger than normal crossings), we construct smoothing families of contact hypersurfaces with controlled Reeb dynamics. We use these to adapt arguments of Borman, Sheridan and Varolgunes to obtain analogous results about symplectic cohomology with supports in the divisor complement. In particular, we will show that several examples of Lagrangian skeleta of such divisor complements are superheavy, in cases where applying Lagrangian Floer theory may be intractable.
非正交除法的超重斯克莱塔
给定一个投影变中的反凸除数,自然会得到一个单调的 K\"ahler 流形。在本文中,对于某一类中的除数(大于正常交叉),我们构造了具有受控里布动力学的接触曲面的平滑族。我们利用这些来调整博尔曼、谢里登和瓦罗尔贡涅斯的论点,从而得到关于在分部补集中有支持的交映同调的类似结果。特别是,我们将证明,在应用拉格朗日浮子理论可能难以解决的情况下,这种除子补的拉格朗日骨架的几个例子是超重的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信