Lagrangian surplusection phenomena

Georgios Dimitroglou Rizell, Jonathan David Evans
{"title":"Lagrangian surplusection phenomena","authors":"Georgios Dimitroglou Rizell, Jonathan David Evans","doi":"arxiv-2408.14883","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a broad class of phenomena which appear when you\nintersect a given Lagrangian submanifold $K$ with a family of Lagrangian\nsubmanifolds $L_t$ (all Hamiltonian isotopic to one another). We establish that\nthis phenomenon occurs in a particular situation, which lets us give a lower\nbound for the volume of any Lagrangian torus in $\\mathbb{CP}^2$ which is\nHamiltonian isotopic to the Chekanov torus. The rest of the paper is a\ndiscussion of why we should expect these phenomena to be very common, motivated\nby Oh's conjecture on the volume-minimising property of the Clifford torus and\nthe concurrent normals conjecture in convex geometry. We pose many open\nquestions.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a broad class of phenomena which appear when you intersect a given Lagrangian submanifold $K$ with a family of Lagrangian submanifolds $L_t$ (all Hamiltonian isotopic to one another). We establish that this phenomenon occurs in a particular situation, which lets us give a lower bound for the volume of any Lagrangian torus in $\mathbb{CP}^2$ which is Hamiltonian isotopic to the Chekanov torus. The rest of the paper is a discussion of why we should expect these phenomena to be very common, motivated by Oh's conjecture on the volume-minimising property of the Clifford torus and the concurrent normals conjecture in convex geometry. We pose many open questions.
拉格朗日盈余现象
在本文中,我们介绍了当给定的拉格朗日子平面$K$与拉格朗日子平面$L_t$(所有哈密顿都彼此同位)族相交时出现的一大类现象。我们确定这一现象发生在一种特殊情况下,从而给出了$\mathbb{CP}^2$中与契卡诺夫环哈密尔顿同构的任何拉格朗日环的体积下限。论文的其余部分讨论了为什么我们应该期待这些现象非常普遍,其动机来自于吴关于克利福德环体积最小化性质的猜想以及凸几何中的并发法线猜想。我们提出了许多悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信