Relative Equilibria for Scaling Symmetries and Central Configurations

Giovanni Rastelli, Manuele Santoprete
{"title":"Relative Equilibria for Scaling Symmetries and Central Configurations","authors":"Giovanni Rastelli, Manuele Santoprete","doi":"arxiv-2408.15191","DOIUrl":null,"url":null,"abstract":"In this paper, we explore scaling symmetries within the framework of\nsymplectic geometry. We focus on the action $\\Phi$ of the multiplicative group\n$G = \\mathbb{R}^+$ on exact symplectic manifolds $(M, \\omega,\\theta)$, with\n$\\omega = -d\\theta$, where $ \\theta $ is a given primitive one-form. Extending\nestablished results in symplectic geometry and Hamiltonian dynamics, we\nintroduce conformally symplectic maps, conformally Hamiltonian systems,\nconformally symplectic group actions, and the notion of conformal invariance.\nThis framework allows us to generalize the momentum map to the conformal\nmomentum map, which is crucial for understanding scaling symmetries.\nAdditionally, we provide a generalized Hamiltonian Noether's theorem for these\nsymmetries. We introduce the (conformal) augmented Hamiltonian $H_{\\xi}$ and prove that\nthe relative equilibria of scaling symmetries are solutions to equations\ninvolving $ H _{ \\xi } $ and the primitive one-form $\\theta$. We derive their\nmain properties, emphasizing the differences from relative equilibria in\ntraditional symplectic actions. For cotangent bundles, we define a scaled cotangent lifted action and derive\nexplicit formulas for the conformal momentum map. We also provide a general\ndefinition of central configurations for Hamiltonian systems on cotangent\nbundles that admit scaling symmetries. Applying these results to simple\nmechanical systems, we introduce the augmented potential $U_{\\xi}$ and show\nthat the relative equilibria of scaling symmetries are solutions to an equation\ninvolving $ U _{ \\xi } $ and the Lagrangian one-form $\\theta_L$. Finally, we apply our general theory to the Newtonian $n$-body problem,\nrecovering the classical equations for central configurations.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore scaling symmetries within the framework of symplectic geometry. We focus on the action $\Phi$ of the multiplicative group $G = \mathbb{R}^+$ on exact symplectic manifolds $(M, \omega,\theta)$, with $\omega = -d\theta$, where $ \theta $ is a given primitive one-form. Extending established results in symplectic geometry and Hamiltonian dynamics, we introduce conformally symplectic maps, conformally Hamiltonian systems, conformally symplectic group actions, and the notion of conformal invariance. This framework allows us to generalize the momentum map to the conformal momentum map, which is crucial for understanding scaling symmetries. Additionally, we provide a generalized Hamiltonian Noether's theorem for these symmetries. We introduce the (conformal) augmented Hamiltonian $H_{\xi}$ and prove that the relative equilibria of scaling symmetries are solutions to equations involving $ H _{ \xi } $ and the primitive one-form $\theta$. We derive their main properties, emphasizing the differences from relative equilibria in traditional symplectic actions. For cotangent bundles, we define a scaled cotangent lifted action and derive explicit formulas for the conformal momentum map. We also provide a general definition of central configurations for Hamiltonian systems on cotangent bundles that admit scaling symmetries. Applying these results to simple mechanical systems, we introduce the augmented potential $U_{\xi}$ and show that the relative equilibria of scaling symmetries are solutions to an equation involving $ U _{ \xi } $ and the Lagrangian one-form $\theta_L$. Finally, we apply our general theory to the Newtonian $n$-body problem, recovering the classical equations for central configurations.
比例对称和中心配置的相对平衡
在本文中,我们将在折射几何的框架内探索缩放对称性。我们聚焦于乘法组$G = \mathbb{R}^+$在精确交映流形$(M, \omega,\theta)$上的作用$\Phi$,其中$\omega = -d\theta$是一个给定的原始单形式。通过扩展交映几何学和哈密顿动力学的既定结果,我们引入了共形交映映射、共形哈密顿系统、共形交映群作用以及共形不变性概念。这个框架使我们能够将动量映射推广到共形动量映射,这对于理解缩放对称性至关重要。我们引入了(共形)增强哈密顿方程 $H_{\xi}$,并证明了缩放对称性的相对平衡是涉及 $ H _{ \xi }$ 和原始单形式 $H _{ \xi }$ 的方程的解。和原始单形式 $\theta$ 的方程。我们推导了它们的主要性质,强调了它们与传统交映作用中的相对均衡的区别。对于余切束,我们定义了尺度余切提升作用,并推导了共形动量映射的明确公式。我们还为承认缩放对称性的余切束上的哈密顿系统提供了中心构型的一般定义。将这些结果应用于简单机械系统,我们引入了增强势 $U_{\xi}$,并证明了缩放对称的相对平衡是涉及 $ U _{ \xi }$ 和拉格朗日方程的解。和拉格朗日单形式 $\theta_L$ 的方程的解。最后,我们将我们的一般理论应用于牛顿$n$体问题,恢复了中心构型的经典方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信