An efficient finite element computation using subparametric transformation up to cubic-order for curved triangular elements

IF 1.5 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
J. Sasikala, G. Shylaja, Naidu V. Kesavulu, B. Venkatesh, S.M. Mallikarjunaiah
{"title":"An efficient finite element computation using subparametric transformation up to cubic-order for curved triangular elements","authors":"J. Sasikala, G. Shylaja, Naidu V. Kesavulu, B. Venkatesh, S.M. Mallikarjunaiah","doi":"10.1108/ec-01-2024-0032","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>A finite element computational methodology on a curved boundary using an efficient subparametric point transformation is presented. The proposed collocation method uses one-side curved and two-side straight triangular elements to derive exact subparametric shape functions.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Our proposed method builds upon the domain discretization into linear, quadratic and cubic-order elements using subparametric spaces and such a discretization greatly reduces the computational complexity. A unique subparametric transformation for each triangle is derived from the unique parabolic arcs via a one-of-a-kind relationship between the nodal points.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The novel transformation derived in this paper is shown to increase the accuracy of the finite element approximation of the boundary value problem (BVP). Our overall strategy is shown to perform well for the BVP considered in this work. The accuracy of the finite element approximate solution increases with higher-order parabolic arcs.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed collocation method uses one-side curved and two-side straight triangular elements to derive exact subparametric shape functions.</p><!--/ Abstract__block -->","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-01-2024-0032","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

A finite element computational methodology on a curved boundary using an efficient subparametric point transformation is presented. The proposed collocation method uses one-side curved and two-side straight triangular elements to derive exact subparametric shape functions.

Design/methodology/approach

Our proposed method builds upon the domain discretization into linear, quadratic and cubic-order elements using subparametric spaces and such a discretization greatly reduces the computational complexity. A unique subparametric transformation for each triangle is derived from the unique parabolic arcs via a one-of-a-kind relationship between the nodal points.

Findings

The novel transformation derived in this paper is shown to increase the accuracy of the finite element approximation of the boundary value problem (BVP). Our overall strategy is shown to perform well for the BVP considered in this work. The accuracy of the finite element approximate solution increases with higher-order parabolic arcs.

Originality/value

The proposed collocation method uses one-side curved and two-side straight triangular elements to derive exact subparametric shape functions.

针对曲面三角形元素,使用高达立方阶的子参数变换进行高效有限元计算
目的介绍了一种在曲面边界上使用高效次参数点变换的有限元计算方法。设计/方法/途径我们提出的方法基于使用子参数空间将域离散为线性、二次方和立方阶元素,这种离散大大降低了计算复杂性。通过结点之间的独特关系,从独特的抛物线弧推导出每个三角形的独特子参数变换。研究结果本文推导出的新颖变换提高了边界值问题(BVP)的有限元近似精度。对于本文所考虑的边界值问题,我们的整体策略表现良好。有限元近似解的精确度随着抛物线弧阶的提高而提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Computations
Engineering Computations 工程技术-工程:综合
CiteScore
3.40
自引率
6.20%
发文量
61
审稿时长
5 months
期刊介绍: The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice. For more information visit: http://www.emeraldgrouppublishing.com/ec.htm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信