C. Augier, A. S. Barabash, F. Bellini, G. Benato, M. Beretta, L. Bergé, J. Billard, Yu. A. Borovlev, L. Cardani, N. Casali, A. Cazes, E. Celi, M. Chapellier, D. Chiesa, I. Dafinei, F. A. Danevich, M. De Jesus, T. Dixon, L. Dumoulin, K. Eitel, F. Ferri, B. K. Fujikawa, J. Gascon, L. Gironi, A. Giuliani, V. D. Grigorieva, M. Gros, D. L. Helis, H. Z. Huang, R. Huang, L. Imbert, A. Juillard, H. Khalife, M. Kleifges, V. V. Kobychev, Yu. G. Kolomensky, S. I. Konovalov, J. Kotila, P. Loaiza, L. Ma, E. P. Makarov, P. de Marcillac, R. Mariam, L. Marini, S. Marnieros, X. F. Navick, C. Nones, E. B. Norman, E. Olivieri, J. L. Ouellet, L. Pagnanini, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, S. Pirro, D. V. Poda, O. G. Polischuk, S. Pozzi, E. Previtali, Th. Redon, A. Rojas, S. Rozov, V. Sanglard, J. A. Scarpaci, B. Schmidt, Y. Shen, V. N. Shlegel, F. Šimkovic, V. Singh, C. Tomei, V. I. Tretyak, V. I. Umatov, L. Vagneron, M. Velázquez, B. Ware, B. Welliver, L. Winslow, M. Xue, E..
{"title":"Searching for beyond the Standard Model physics using the improved description of 100Mo $$2\\nu \\beta \\beta $$ decay spectral shape with CUPID-Mo","authors":"C. Augier, A. S. Barabash, F. Bellini, G. Benato, M. Beretta, L. Bergé, J. Billard, Yu. A. Borovlev, L. Cardani, N. Casali, A. Cazes, E. Celi, M. Chapellier, D. Chiesa, I. Dafinei, F. A. Danevich, M. De Jesus, T. Dixon, L. Dumoulin, K. Eitel, F. Ferri, B. K. Fujikawa, J. Gascon, L. Gironi, A. Giuliani, V. D. Grigorieva, M. Gros, D. L. Helis, H. Z. Huang, R. Huang, L. Imbert, A. Juillard, H. Khalife, M. Kleifges, V. V. Kobychev, Yu. G. Kolomensky, S. I. Konovalov, J. Kotila, P. Loaiza, L. Ma, E. P. Makarov, P. de Marcillac, R. Mariam, L. Marini, S. Marnieros, X. F. Navick, C. Nones, E. B. Norman, E. Olivieri, J. L. Ouellet, L. Pagnanini, L. Pattavina, B. Paul, M. Pavan, H. Peng, G. Pessina, S. Pirro, D. V. Poda, O. G. Polischuk, S. Pozzi, E. Previtali, Th. Redon, A. Rojas, S. Rozov, V. Sanglard, J. A. Scarpaci, B. Schmidt, Y. Shen, V. N. Shlegel, F. Šimkovic, V. Singh, C. Tomei, V. I. Tretyak, V. I. Umatov, L. Vagneron, M. Velázquez, B. Ware, B. Welliver, L. Winslow, M. Xue, E..","doi":"10.1140/epjc/s10052-024-13286-4","DOIUrl":null,"url":null,"abstract":"<p>The current experiments searching for neutrinoless double-<span>\\(\\beta \\)</span> (<span>\\(0\\nu \\beta \\beta \\)</span>) decay also collect large statistics of Standard Model allowed two-neutrino double-<span>\\(\\beta \\)</span> (<span>\\(2\\nu \\beta \\beta \\)</span>) decay events. These can be used to search for Beyond Standard Model (BSM) physics via <span>\\(2\\nu \\beta \\beta \\)</span> decay spectral distortions. <sup>100</sup>Mo has a natural advantage due to its relatively short half-life, allowing higher <span>\\(2\\nu \\beta \\beta \\)</span> decay statistics at equal exposures compared to the other isotopes. We demonstrate the potential of the dual read-out bolometric technique exploiting a <sup>100</sup>Mo exposure of 1.47 kg <span>\\(\\times \\)</span> years, acquired in the CUPID-Mo experiment at the Modane underground laboratory (France). We set limits on <span>\\(0\\nu \\beta \\beta \\)</span> decays with the emission of one or more Majorons, on <span>\\(2\\nu \\beta \\beta \\)</span> decay with Lorentz violation, and <span>\\(2\\nu \\beta \\beta \\)</span> decay with a sterile neutrino emission. In this analysis, we investigate the systematic uncertainty induced by modeling the <span>\\(2\\nu \\beta \\beta \\)</span> decay spectral shape parameterized through an improved model, an effect never considered before. This work motivates searches for BSM processes in the upcoming CUPID experiment, which will collect the largest amount of <span>\\(2\\nu \\beta \\beta \\)</span> decay events among the next-generation experiments.</p>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://doi.org/10.1140/epjc/s10052-024-13286-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
The current experiments searching for neutrinoless double-\(\beta \) (\(0\nu \beta \beta \)) decay also collect large statistics of Standard Model allowed two-neutrino double-\(\beta \) (\(2\nu \beta \beta \)) decay events. These can be used to search for Beyond Standard Model (BSM) physics via \(2\nu \beta \beta \) decay spectral distortions. 100Mo has a natural advantage due to its relatively short half-life, allowing higher \(2\nu \beta \beta \) decay statistics at equal exposures compared to the other isotopes. We demonstrate the potential of the dual read-out bolometric technique exploiting a 100Mo exposure of 1.47 kg \(\times \) years, acquired in the CUPID-Mo experiment at the Modane underground laboratory (France). We set limits on \(0\nu \beta \beta \) decays with the emission of one or more Majorons, on \(2\nu \beta \beta \) decay with Lorentz violation, and \(2\nu \beta \beta \) decay with a sterile neutrino emission. In this analysis, we investigate the systematic uncertainty induced by modeling the \(2\nu \beta \beta \) decay spectral shape parameterized through an improved model, an effect never considered before. This work motivates searches for BSM processes in the upcoming CUPID experiment, which will collect the largest amount of \(2\nu \beta \beta \) decay events among the next-generation experiments.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.