Approximation Method for Calculation of Output Response Parameters of Acousto-Optic Demodulator on Pulsed Input Influence

Q3 Engineering
A. R. Hasanov, R. A. Hasanov, E. A. Agaev, R. A. Akhmadov, A. G. Huseynov, R. A. Allahverdizade
{"title":"Approximation Method for Calculation of Output Response Parameters of Acousto-Optic Demodulator on Pulsed Input Influence","authors":"A. R. Hasanov, R. A. Hasanov, E. A. Agaev, R. A. Akhmadov, A. G. Huseynov, R. A. Allahverdizade","doi":"10.3103/s0735272723070051","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, there are represented the features of acousto-optic interaction in the context of pulse signal detection. It specifies the necessity of the development of a simpler method for the calculation of a demodulator output signal parameters in case of its feeding with a pulse signal. Approximation models of modulating pulse and a pulse of the photodetector’s output were made based on geometric representation of the photo-elastic interaction. It is shown the main parameter defining the shape of the output pulse is the inertia of the acousto-optic demodulator. It is postulated that this parameter is shaped due to the influence of two factors: an acoustic-optic interaction and a photodetector inertia. For estimation of the degree of influence of these factors, a numerical analysis based on developed models is carried out. The results of theoretic research and numerical analysis are verified with experimental research. It is stated that for the application of a high-performance photodetector, the inertia of the acousto-optic demodulator is defined mainly by space-time parameters of acousto-optic interaction.</p>","PeriodicalId":52470,"journal":{"name":"Radioelectronics and Communications Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0735272723070051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, there are represented the features of acousto-optic interaction in the context of pulse signal detection. It specifies the necessity of the development of a simpler method for the calculation of a demodulator output signal parameters in case of its feeding with a pulse signal. Approximation models of modulating pulse and a pulse of the photodetector’s output were made based on geometric representation of the photo-elastic interaction. It is shown the main parameter defining the shape of the output pulse is the inertia of the acousto-optic demodulator. It is postulated that this parameter is shaped due to the influence of two factors: an acoustic-optic interaction and a photodetector inertia. For estimation of the degree of influence of these factors, a numerical analysis based on developed models is carried out. The results of theoretic research and numerical analysis are verified with experimental research. It is stated that for the application of a high-performance photodetector, the inertia of the acousto-optic demodulator is defined mainly by space-time parameters of acousto-optic interaction.

Abstract Image

计算脉冲输入影响声光解调器输出响应参数的近似方法
摘要 本文介绍了脉冲信号检测中声光相互作用的特点。本文指出,有必要开发一种更简单的方法,用于在脉冲信号输入的情况下计算解调器的输出信号参数。根据光弹性相互作用的几何表示法,建立了调制脉冲和光电探测器输出脉冲的近似模型。结果表明,决定输出脉冲形状的主要参数是声光解调器的惯性。据推测,该参数的形成受两个因素的影响:声光相互作用和光电探测器惯性。为了估算这些因素的影响程度,根据开发的模型进行了数值分析。实验研究验证了理论研究和数值分析的结果。结果表明,对于高性能光电探测器的应用,声光解调器的惯性主要由声光相互作用的时空参数决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radioelectronics and Communications Systems
Radioelectronics and Communications Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.10
自引率
0.00%
发文量
9
期刊介绍: Radioelectronics and Communications Systems  covers urgent theoretical problems of radio-engineering; results of research efforts, leading experience, which determines directions and development of scientific research in radio engineering and radio electronics; publishes materials of scientific conferences and meetings; information on scientific work in higher educational institutions; newsreel and bibliographic materials. Journal publishes articles in the following sections:Antenna-feeding and microwave devices;Vacuum and gas-discharge devices;Solid-state electronics and integral circuit engineering;Optical radar, communication and information processing systems;Use of computers for research and design of radio-electronic devices and systems;Quantum electronic devices;Design of radio-electronic devices;Radar and radio navigation;Radio engineering devices and systems;Radio engineering theory;Medical radioelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信