{"title":"Tunnel Face Stability During Slurry-Shield Tunnelling in Saturated Cohesionless Soil Considering Slurry Infiltration","authors":"Qingfeng Shi, Tao Xu, Dingwen Zhang, Yihuai Liu","doi":"10.1007/s40999-024-01024-6","DOIUrl":null,"url":null,"abstract":"<p>The pressurised bentonite slurry efficiently stabilised the tunnel face, but slurry infiltration may reduce its effectiveness. In this work, the effect of slurry infiltration on tunnel face stability during slurry-shield tunnelling in saturated cohesionless soil is investigated, and the results reveal that due to slurry infiltration, an additional margin for support pressure is needed. The infiltration distance has a significant influence on the effective support at the tunnel face. For slurries with a low viscosity (apparent viscosity = 4 mPa·s), only when the infiltration distance is small (< 0.5 m) is the effective support ratio high (> 80%). Furthermore, a larger infiltration distance or a larger value of tunnel diameter to cover depth ratio (C/D) requires a higher support pressure. Generally, the hydraulic gradient at the face in an unconfined aquifer is greater than that in a semi-confined aquifer. For semi-confined aquifer, a smaller height or a larger leakage length leads to a greater hydraulic gradient. Finally, for shield tunnelling in an aquifer, when the gradient at the tunnel face is less than 1, a viscous slurry is recommended to replace the pure water to support the tunnel face.</p>","PeriodicalId":50331,"journal":{"name":"International Journal of Civil Engineering","volume":"55 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40999-024-01024-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The pressurised bentonite slurry efficiently stabilised the tunnel face, but slurry infiltration may reduce its effectiveness. In this work, the effect of slurry infiltration on tunnel face stability during slurry-shield tunnelling in saturated cohesionless soil is investigated, and the results reveal that due to slurry infiltration, an additional margin for support pressure is needed. The infiltration distance has a significant influence on the effective support at the tunnel face. For slurries with a low viscosity (apparent viscosity = 4 mPa·s), only when the infiltration distance is small (< 0.5 m) is the effective support ratio high (> 80%). Furthermore, a larger infiltration distance or a larger value of tunnel diameter to cover depth ratio (C/D) requires a higher support pressure. Generally, the hydraulic gradient at the face in an unconfined aquifer is greater than that in a semi-confined aquifer. For semi-confined aquifer, a smaller height or a larger leakage length leads to a greater hydraulic gradient. Finally, for shield tunnelling in an aquifer, when the gradient at the tunnel face is less than 1, a viscous slurry is recommended to replace the pure water to support the tunnel face.
期刊介绍:
International Journal of Civil Engineering, The official publication of Iranian Society of Civil Engineering and Iran University of Science and Technology is devoted to original and interdisciplinary, peer-reviewed papers on research related to the broad spectrum of civil engineering with similar emphasis on all topics.The journal provides a forum for the International Civil Engineering Community to present and discuss matters of major interest e.g. new developments in civil regulations, The topics are included but are not necessarily restricted to :- Structures- Geotechnics- Transportation- Environment- Earthquakes- Water Resources- Construction Engineering and Management, and New Materials.