Gabriel's problem for harmonic Hardy spaces

Suman Das
{"title":"Gabriel's problem for harmonic Hardy spaces","authors":"Suman Das","doi":"arxiv-2408.06623","DOIUrl":null,"url":null,"abstract":"We obtain inequalities of the form $$\\int_C |f(z)|^p |dz| \\leq A(p)\n\\int_{\\mathbb{T}} |f(z)|^p |dz|, \\quad (p>1)$$ where $f$ is harmonic in the\nunit disk $\\mathbb{D}$, $\\mathbb{T}$ is the unit circle, and $C$ is any convex\ncurve in $\\mathbb{D}$. Such inequalities were originally studied for analytic\nfunctions by R. M. Gabriel [Proc. London Math. Soc. (2), 28(2):121-127, 1928].\nWe show that these results, unlike in the case of analytic functions, cannot be\ntrue in general for $0< p \\le 1$. Therefore, we produce an inequality of a\nslightly different type, which deals with the case $0<p<1$. An example is given\nto show that this result is \"best possible\", in the sense that an extension to\n$p=1$ fails. Finally, we consider the special case when $C$ is a circle and\nprove a refined result which, surprisingly, holds for $p=1$ as well.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain inequalities of the form $$\int_C |f(z)|^p |dz| \leq A(p) \int_{\mathbb{T}} |f(z)|^p |dz|, \quad (p>1)$$ where $f$ is harmonic in the unit disk $\mathbb{D}$, $\mathbb{T}$ is the unit circle, and $C$ is any convex curve in $\mathbb{D}$. Such inequalities were originally studied for analytic functions by R. M. Gabriel [Proc. London Math. Soc. (2), 28(2):121-127, 1928]. We show that these results, unlike in the case of analytic functions, cannot be true in general for $0< p \le 1$. Therefore, we produce an inequality of a slightly different type, which deals with the case $0
谐波哈代空间的加布里埃尔问题
我们可以得到如下形式的不等式 $$\int_C |f(z)|^p |dz| \leq A(p)\int_{mathbb{T}}.|f(z)|^p |dz|, \quad (p>1)$$ 其中 $f$ 是单位圆盘 $\mathbb{D}$ 中的谐波,$\mathbb{T}$ 是单位圆,$C$ 是 $\mathbb{D}$ 中的任意凸曲线。这种不等式最初是由 R. M. Gabriel 针对解析函数研究的[Proc. London Math. Soc. (2), 28(2):121-127, 1928]。我们证明,与解析函数的情况不同,这些结果在一般情况下对于 $0< p \le 1$ 不能成立。因此,我们提出了一个略有不同的不等式,来处理 $0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信