Lappan's five-point theorem for φ-Normal Harmonic Mappings

Nisha Bohra, Gopal Datt, Ritesh Pal
{"title":"Lappan's five-point theorem for φ-Normal Harmonic Mappings","authors":"Nisha Bohra, Gopal Datt, Ritesh Pal","doi":"arxiv-2408.05809","DOIUrl":null,"url":null,"abstract":"A harmonic mapping $f=h+\\overline{g}$ in $\\mathbb{D}$ is $\\varphi$-normal if\n$f^{\\#}(z)=\\mathcal{O}(|\\varphi(z)|), \\text{ as } |z|\\to 1^-,$ where\n$f^{\\#}(z)={(|h'(z)|+|g'(z)|)}/{(1+|f(z)|^2)}.$ In this paper, we establish\nseveral sufficient conditions for harmonic mappings to be $\\varphi$-normal. We\nalso extend the five-point theorem of Lappan for $\\varphi$-normal harmonic\nmappings.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A harmonic mapping $f=h+\overline{g}$ in $\mathbb{D}$ is $\varphi$-normal if $f^{\#}(z)=\mathcal{O}(|\varphi(z)|), \text{ as } |z|\to 1^-,$ where $f^{\#}(z)={(|h'(z)|+|g'(z)|)}/{(1+|f(z)|^2)}.$ In this paper, we establish several sufficient conditions for harmonic mappings to be $\varphi$-normal. We also extend the five-point theorem of Lappan for $\varphi$-normal harmonic mappings.
φ正态谐波映射的拉潘五点定理
|在本文中,我们建立了谐波映射为 $\varphi$-normal 的几个充分条件。我们还扩展了拉潘关于 $\varphi$ 正交谐映射的五点定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信