Carleson measures on domains in Heisenberg groups

Tomasz Adamowicz, Marcin Gryszówka
{"title":"Carleson measures on domains in Heisenberg groups","authors":"Tomasz Adamowicz, Marcin Gryszówka","doi":"arxiv-2409.01096","DOIUrl":null,"url":null,"abstract":"We study the Carleson measures on NTA and ADP domains in the Heisenberg\ngroups $\\mathbb{H}^n$ and provide two characterizations of such measures: (1)\nin terms of the level sets of subelliptic harmonic functions and (2) via the\n$1$-quasiconformal family of mappings on the Kor\\'anyi--Reimann unit ball.\nMoreover, we establish the $L^2$-bounds for the square function $S_{\\alpha}$ of\na subelliptic harmonic function and the Carleson measure estimates for the BMO\nboundary data, both on NTA domains in $\\mathbb{H}^n$. Finally, we prove a\nFatou-type theorem on $(\\epsilon, \\delta)$-domains in $\\mathbb{H}^n$.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Carleson measures on NTA and ADP domains in the Heisenberg groups $\mathbb{H}^n$ and provide two characterizations of such measures: (1) in terms of the level sets of subelliptic harmonic functions and (2) via the $1$-quasiconformal family of mappings on the Kor\'anyi--Reimann unit ball. Moreover, we establish the $L^2$-bounds for the square function $S_{\alpha}$ of a subelliptic harmonic function and the Carleson measure estimates for the BMO boundary data, both on NTA domains in $\mathbb{H}^n$. Finally, we prove a Fatou-type theorem on $(\epsilon, \delta)$-domains in $\mathbb{H}^n$.
海森堡群域上的卡列森度量
我们研究了海森堡群 $\mathbb{H}^n$ 中 NTA 和 ADP 域上的 Carleson 度量,并提供了这种度量的两种特征:(此外,我们建立了亚椭圆谐函数平方函数 $S_{\alpha}$ 的 $L^2$ 边界,以及 BMO 边界数据的卡列森度量估计,两者都是在 $\mathbb{H}^n$ 中的 NTA 域上。最后,我们在 $\mathbb{H}^n$ 中的 $(\epsilon, \delta)$域上证明了一个法图式定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信