Holomorphic Legendrian curves in convex domains

Andrej Svetina
{"title":"Holomorphic Legendrian curves in convex domains","authors":"Andrej Svetina","doi":"arxiv-2409.04197","DOIUrl":null,"url":null,"abstract":"We prove several results on approximation and interpolation of holomorphic\nLegendrian curves in convex domains in $\\mathbb{C}^{2n+1}$, $n \\geq 2$, with\nthe standard contact structure. Namely, we show that such a curve, defined on a\ncompact bordered Riemann surface $M$, whose image lies in the interior of a\nconvex domain $\\mathscr{D} \\subset \\mathbb{C}^{2n+1}$, may be approximated\nuniformly on compacts in the interior $\\mathrm{Int} \\, M$ by holomorphic\nLegendrian curves $\\mathrm{Int} \\, M \\to \\mathscr{D}$ such that the\napproximants are proper, complete, agree with the starting curve on a given\nfinite set in $\\mathrm{Int} \\, M$ to a given finite order, and hit a specified\ndiverging discrete set in the convex domain. We first show approximation of\nthis kind on bounded strongly convex domains and then generalise it to\narbitrary convex domains. As a consequence we show that any bordered Riemann\nsurface properly embeds into a convex domain as a complete holomorphic\nLegendrian curve under a suitable geometric condition on the boundary of the\ncodomain.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove several results on approximation and interpolation of holomorphic Legendrian curves in convex domains in $\mathbb{C}^{2n+1}$, $n \geq 2$, with the standard contact structure. Namely, we show that such a curve, defined on a compact bordered Riemann surface $M$, whose image lies in the interior of a convex domain $\mathscr{D} \subset \mathbb{C}^{2n+1}$, may be approximated uniformly on compacts in the interior $\mathrm{Int} \, M$ by holomorphic Legendrian curves $\mathrm{Int} \, M \to \mathscr{D}$ such that the approximants are proper, complete, agree with the starting curve on a given finite set in $\mathrm{Int} \, M$ to a given finite order, and hit a specified diverging discrete set in the convex domain. We first show approximation of this kind on bounded strongly convex domains and then generalise it to arbitrary convex domains. As a consequence we show that any bordered Riemann surface properly embeds into a convex domain as a complete holomorphic Legendrian curve under a suitable geometric condition on the boundary of the codomain.
凸域中的全态 Legendrian 曲线
我们证明了在 $\mathbb{C}^{2n+1}$, $n \geq 2$ 的凸域中具有标准接触结构的全形黎曼曲线的逼近和插值的几个结果。也就是说,我们证明了这样一条曲线,它定义在一个紧凑的有边黎曼曲面 $M$上,其图像位于一个凸域 $\mathscr{D} 的内部。\子集$mathbb{C}^{2n+1}$上的曲线可以在内部$mathrm{Int}, M$的紧凑体上通过全角近似得到\M$ 可以在内部的紧凑的 $\mathrm{Int}\M 到 Mathscr{D}$ 这样的近似值是合适的 完整的 与$mathrm{Int}中给定无限集上的起始曲线一致的\M$ 中给定有限阶的起始曲线一致,并击中凸域中指定的发散离散集。我们首先展示了在有界强凸域上的这种近似,然后将其推广到任意凸域。因此,我们证明了在凸域边界上的适当几何条件下,任何有界黎曼曲面都可以作为一条完整的全形黎曼曲线嵌入凸域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信