Equivariant scaling asymptotics for Poisson and Szegő kernels on Grauert tube boundaries

Simone Gallivanone, Roberto Paoletti
{"title":"Equivariant scaling asymptotics for Poisson and Szegő kernels on Grauert tube boundaries","authors":"Simone Gallivanone, Roberto Paoletti","doi":"arxiv-2409.04753","DOIUrl":null,"url":null,"abstract":"Let $(M,\\kappa)$ be a closed and connected real-analytic Riemannian manifold,\nacted upon by a compact Lie group of isometries $G$. We consider the following\ntwo kinds of equivariant asymptotics along a fixed Grauer tube boundary\n$X^\\tau$ of $(M,\\kappa)$. 1): Given the induced unitary representation of $G$ on the eigenspaces of the\nLaplacian of $(M,\\kappa)$, these split over the irreducible representations of\n$G$. On the other hand, the eigenfunctions of the Laplacian of $(M,\\kappa)$\nadmit a simultaneous complexification to some Grauert tube. We study the\nasymptotic concentration along $X^\\tau$ of the complexified eigenfunctions\npertaining to a fixed isotypical component. 2): There are furthermore an induced action of $G$ as a group of CR and\ncontact automorphisms on $X^\\tau$, and a corresponding unitary representation\non the Hardy space $H(X^\\tau)$. The action of $G$ on $X^\\tau$ commutes with the\nhomogeneous \\lq geogesic flow\\rq\\, and the representation on the Hardy space\ncommutes with the elliptic self-adjoint Toeplitz operator induced by the\ngenerator of the goedesic flow. Hence each eigenspace of the latter also splits\nover the irreducible representations of $G$. We study the asymptotic\nconcentration of the eigenfunctions in a given isotypical component. We also give some applications of these asymptotics.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(M,\kappa)$ be a closed and connected real-analytic Riemannian manifold, acted upon by a compact Lie group of isometries $G$. We consider the following two kinds of equivariant asymptotics along a fixed Grauer tube boundary $X^\tau$ of $(M,\kappa)$. 1): Given the induced unitary representation of $G$ on the eigenspaces of the Laplacian of $(M,\kappa)$, these split over the irreducible representations of $G$. On the other hand, the eigenfunctions of the Laplacian of $(M,\kappa)$ admit a simultaneous complexification to some Grauert tube. We study the asymptotic concentration along $X^\tau$ of the complexified eigenfunctions pertaining to a fixed isotypical component. 2): There are furthermore an induced action of $G$ as a group of CR and contact automorphisms on $X^\tau$, and a corresponding unitary representation on the Hardy space $H(X^\tau)$. The action of $G$ on $X^\tau$ commutes with the homogeneous \lq geogesic flow\rq\, and the representation on the Hardy space commutes with the elliptic self-adjoint Toeplitz operator induced by the generator of the goedesic flow. Hence each eigenspace of the latter also splits over the irreducible representations of $G$. We study the asymptotic concentration of the eigenfunctions in a given isotypical component. We also give some applications of these asymptotics.
格劳尔特管边界上泊松和 Szegő 核的等变缩放渐近学
让$(M,\kappa)$ 是一个封闭且连通的实解析黎曼流形,由一个紧凑的等距李群$G$ 作用。我们考虑以下两种沿$(M,\kappa)$ 的固定格拉乌尔管边界$X^\tau$的等变渐近线:)给定$G$在$(M,\kappa)$的拉普拉卡方的特征空间上的诱导单元表示,这些空间在$G$的不可还原表示上分裂。另一方面,$(M,\kappa)$的拉普拉斯函数的特征函数允许同时复合到某些格劳尔特管。我们研究了与固定同型分量有关的复分解特征函数沿 $X^\tau$ 的渐近集中。2):此外,在 $X^\tau$ 上还存在作为 CR 和接触自变形群的 $G$ 的诱导作用,以及在哈代空间 $H(X^\tau)$上的相应单元表示。$G$在$X^\tau$上的作用与同质\lq geogesic flow\rq 相等,而在Hardy空间上的表示与goedesic flow的发生器诱导的椭圆自关节Toeplitz算子相等。因此,后者的每个特征空间也分裂于 $G$ 的不可还原表示之上。我们研究了给定等式分量中特征函数的渐近集中。我们还给出了这些渐近的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信