A new way to express boundary values in terms of holomorphic functions on planar Lipschitz domains

Steven R. Bell, Loredana Lanzani, Nathan A. Wagner
{"title":"A new way to express boundary values in terms of holomorphic functions on planar Lipschitz domains","authors":"Steven R. Bell, Loredana Lanzani, Nathan A. Wagner","doi":"arxiv-2409.06611","DOIUrl":null,"url":null,"abstract":"We decompose $p$ - integrable functions on the boundary of a simply connected\nLipschitz domain $\\Omega \\subset \\mathbb C$ into the sum of the boundary values\nof two, uniquely determined holomorphic functions, where one is holomorphic in\n$\\Omega$ while the other is holomorphic in $\\mathbb C\\setminus\n\\overline{\\Omega}$ and vanishes at infinity. This decomposition has been\ndescribed previously for smooth functions on the boundary of a smooth domain.\nUniqueness of the decomposition is elementary in the smooth case, but extending\nit to the $L^p$ setting relies upon a regularity result for the holomorphic\nHardy space $h^p(b\\Omega)$ which appears to be new even for smooth $\\Omega$. An\nimmediate consequence of our result will be a new characterization of the\nkernel of the Cauchy transform acting on $L^p(b\\Omega)$. These results give a\nnew perspective on the classical Dirichlet problem for harmonic functions and\nthe Poisson formula even in the case of the disc. Further applications are\npresented along with directions for future work.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We decompose $p$ - integrable functions on the boundary of a simply connected Lipschitz domain $\Omega \subset \mathbb C$ into the sum of the boundary values of two, uniquely determined holomorphic functions, where one is holomorphic in $\Omega$ while the other is holomorphic in $\mathbb C\setminus \overline{\Omega}$ and vanishes at infinity. This decomposition has been described previously for smooth functions on the boundary of a smooth domain. Uniqueness of the decomposition is elementary in the smooth case, but extending it to the $L^p$ setting relies upon a regularity result for the holomorphic Hardy space $h^p(b\Omega)$ which appears to be new even for smooth $\Omega$. An immediate consequence of our result will be a new characterization of the kernel of the Cauchy transform acting on $L^p(b\Omega)$. These results give a new perspective on the classical Dirichlet problem for harmonic functions and the Poisson formula even in the case of the disc. Further applications are presented along with directions for future work.
用平面 Lipschitz 域上的全纯函数表达边界值的新方法
我们将简单相连的利普斯奇茨域 $Omega \subset \mathbb C$ 边界上的 $p$ - 可积分函数分解为两个唯一确定的全纯函数的边界值之和,其中一个在 $\Omega$ 中是全纯的,而另一个在 $\mathbb C\setminus\overline{\Omega}$ 中是全纯的,并且在无穷远处消失。在光滑的情况下,分解的唯一性是基本的,但将其扩展到 $L^p$ 设置依赖于全形哈代空间 $h^p(b\Omega)$ 的正则性结果,即使对于光滑的 $\Omega$ 来说,这个结果似乎也是新的。我们的结果的直接后果将是作用于 $L^p(b\Omega)$ 的考奇变换的核的新表征。这些结果为谐函数的经典狄利克特问题和泊松公式提供了新的视角,即使在圆盘的情况下也是如此。本文还介绍了进一步的应用以及未来的工作方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信