Blow-up analysis and degree theory for the Webster curvature prescription problem in three dimensions

Claudio Afeltra
{"title":"Blow-up analysis and degree theory for the Webster curvature prescription problem in three dimensions","authors":"Claudio Afeltra","doi":"arxiv-2409.07334","DOIUrl":null,"url":null,"abstract":"Given a strictly pseudoconvex CR manifold $M$ of dimension three and positive\nCR Yamabe class, and a positive smooth function $K:M\\to\\mathbf{R}$ verifying\nsome mild and generic hypotheses, we prove the compactness of the set of\nsolutions of the Webster curvature prescription problem associated to $K$, and\nwe compute the Leray-Schauder degree in terms of the critical points of $K$. As\na corollary, we get an existence result which generalizes the ones existent in\nthe literature.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a strictly pseudoconvex CR manifold $M$ of dimension three and positive CR Yamabe class, and a positive smooth function $K:M\to\mathbf{R}$ verifying some mild and generic hypotheses, we prove the compactness of the set of solutions of the Webster curvature prescription problem associated to $K$, and we compute the Leray-Schauder degree in terms of the critical points of $K$. As a corollary, we get an existence result which generalizes the ones existent in the literature.
韦伯斯特曲率三维处方问题的膨胀分析和度理论
给定一个三维正CR山贝类的严格伪凸CR流形$M$和一个正光滑函数$K:M\to\mathbf{R}$,我们证明了与$K$相关的韦伯斯特曲率规定问题的解集的紧凑性,并根据$K$的临界点计算了勒雷-肖德尔度。作为一个推论,我们得到了一个存在性结果,它概括了文献中已有的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信