Zhi Yang, Jianfang Chen, Haiyan Jin, Hongliang Li, Zhongqiang Ji, Yangjie Li, Bin Wang, Zhenyi Cao, Qianna Chen
{"title":"Tracing nitrate sources in one of the world’s largest eutrophicated bays (Hangzhou Bay): insights from nitrogen and oxygen isotopes","authors":"Zhi Yang, Jianfang Chen, Haiyan Jin, Hongliang Li, Zhongqiang Ji, Yangjie Li, Bin Wang, Zhenyi Cao, Qianna Chen","doi":"10.1007/s13131-024-2375-y","DOIUrl":null,"url":null,"abstract":"<p>Eutrophication caused by inputs of excess nitrogen (N) has become a serious environmental problem in Hangzhou Bay (China), but the sources of this nitrogen are not well understood. In this study, the August 2019 distributions of salinity, nutrients [nitrate (NO<span>\n<sup>−</sup><sub>3</sub>\n</span>), nitrite, ammonium, and phosphate], and the stable isotopic composition of NO<span>\n<sup>−</sup><sub>3</sub>\n</span> (δ<sup>15</sup>N and δ<sup>18</sup>O) were used to investigate sources of dissolved inorganic nitrogen (DIN) to Hangzhou Bay. Spatial distributions of nitrate, salinity, and nitrate δ<sup>18</sup>O indicate that the Qiantang River, the Changjiang River, and nearshore coastal waters may all contribute nitrate to the bay. Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area, we suggest that the NO<span>\n<sup>−</sup><sub>3</sub>\n</span> in Hangzhou Bay was likely derived mainly from soils, synthetic N fertilizer, and manure and sewage. End-member modeling indicates that in the upper half of the bay, the Qiantang River was a very important DIN source, possibly contributing more than 50% of DIN in the bay head area. In the lower half of the bay, DIN was sourced mainly from strongly intruding coastal water. DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"22 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-024-2375-y","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
Eutrophication caused by inputs of excess nitrogen (N) has become a serious environmental problem in Hangzhou Bay (China), but the sources of this nitrogen are not well understood. In this study, the August 2019 distributions of salinity, nutrients [nitrate (NO−3), nitrite, ammonium, and phosphate], and the stable isotopic composition of NO−3 (δ15N and δ18O) were used to investigate sources of dissolved inorganic nitrogen (DIN) to Hangzhou Bay. Spatial distributions of nitrate, salinity, and nitrate δ18O indicate that the Qiantang River, the Changjiang River, and nearshore coastal waters may all contribute nitrate to the bay. Based on the isotopic compositions of nitrate in these potential source waters and conservative mixing of nitrate in our study area, we suggest that the NO−3 in Hangzhou Bay was likely derived mainly from soils, synthetic N fertilizer, and manure and sewage. End-member modeling indicates that in the upper half of the bay, the Qiantang River was a very important DIN source, possibly contributing more than 50% of DIN in the bay head area. In the lower half of the bay, DIN was sourced mainly from strongly intruding coastal water. DIN coming directly from the Changjiang River made a relatively small contribution to Hangzhou Bay DIN in August 2019.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.