Analysis of a parabolic bilateral obstacle problem with non-monotone relations in the domain

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xilu Wang, Xiaoliang Cheng, Hailing Xuan
{"title":"Analysis of a parabolic bilateral obstacle problem with non-monotone relations in the domain","authors":"Xilu Wang, Xiaoliang Cheng, Hailing Xuan","doi":"10.1177/10812865241261619","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a new parabolic bilateral obstacle model. Both upper and lower obstacles are elastic-rigid and assign a non-monotone reactive normal pressure with respect to the interpenetration. The weak form of the model is a parabolic variational–hemivariational inequality with non-monotone multivalued relations in the domain. We show the existence and uniqueness of the solution. Then, a fully discrete numerical method is introduced, with the approximations can be internal or external. We bound the error estimates and obtain the Céa type inequality. Using the linear finite elements, the optimal-order error estimates are derived. Finally, we report the numerical simulation results.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"19 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10812865241261619","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a new parabolic bilateral obstacle model. Both upper and lower obstacles are elastic-rigid and assign a non-monotone reactive normal pressure with respect to the interpenetration. The weak form of the model is a parabolic variational–hemivariational inequality with non-monotone multivalued relations in the domain. We show the existence and uniqueness of the solution. Then, a fully discrete numerical method is introduced, with the approximations can be internal or external. We bound the error estimates and obtain the Céa type inequality. Using the linear finite elements, the optimal-order error estimates are derived. Finally, we report the numerical simulation results.
具有非单调关系域的抛物线双边障碍问题分析
在本文中,我们考虑了一种新的抛物线双边障碍物模型。上部和下部障碍物都是弹性刚性的,并对相互穿透施加非单调的反作用法向压力。该模型的弱形式是一个抛物线变分-半变量不等式,域中存在非单调多值关系。我们证明了解的存在性和唯一性。然后,我们介绍了一种完全离散的数值方法,其近似值可以是内部的,也可以是外部的。我们对误差估计进行了约束,并得到了 Céa 型不等式。利用线性有限元,我们得出了最优阶误差估计。最后,我们报告了数值模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics and Mechanics of Solids
Mathematics and Mechanics of Solids 工程技术-材料科学:综合
CiteScore
4.80
自引率
19.20%
发文量
159
审稿时长
1 months
期刊介绍: Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science. The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信