New constructions of pseudorandom codes

Surendra Ghentiyala, Venkatesan Guruswami
{"title":"New constructions of pseudorandom codes","authors":"Surendra Ghentiyala, Venkatesan Guruswami","doi":"arxiv-2409.07580","DOIUrl":null,"url":null,"abstract":"Introduced in [CG24], pseudorandom error-correcting codes (PRCs) are a new\ncryptographic primitive with applications in watermarking generative AI models.\nThese are codes where a collection of polynomially many codewords is\ncomputationally indistinguishable from random, except to individuals with the\ndecoding key. In this work, we examine the assumptions under which PRCs with\nrobustness to a constant error rate exist. 1. We show that if both the planted hyperloop assumption introduced in\n[BKR23] and security of a version of Goldreich's PRG hold, then there exist\npublic-key PRCs for which no efficient adversary can distinguish a polynomial\nnumber of codewords from random with better than $o(1)$ advantage. 2. We revisit the construction of [CG24] and show that it can be based on a\nwider range of assumptions than presented in [CG24]. To do this, we introduce a\nweakened version of the planted XOR assumption which we call the weak planted\nXOR assumption and which may be of independent interest. 3. We initiate the study of PRCs which are secure against space-bounded\nadversaries. We show how to construct secret-key PRCs of length $O(n)$ which\nare $\\textit{unconditionally}$ indistinguishable from random by\n$\\text{poly}(n)$ time, $O(n^{1.5-\\varepsilon})$ space adversaries.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduced in [CG24], pseudorandom error-correcting codes (PRCs) are a new cryptographic primitive with applications in watermarking generative AI models. These are codes where a collection of polynomially many codewords is computationally indistinguishable from random, except to individuals with the decoding key. In this work, we examine the assumptions under which PRCs with robustness to a constant error rate exist. 1. We show that if both the planted hyperloop assumption introduced in [BKR23] and security of a version of Goldreich's PRG hold, then there exist public-key PRCs for which no efficient adversary can distinguish a polynomial number of codewords from random with better than $o(1)$ advantage. 2. We revisit the construction of [CG24] and show that it can be based on a wider range of assumptions than presented in [CG24]. To do this, we introduce a weakened version of the planted XOR assumption which we call the weak planted XOR assumption and which may be of independent interest. 3. We initiate the study of PRCs which are secure against space-bounded adversaries. We show how to construct secret-key PRCs of length $O(n)$ which are $\textit{unconditionally}$ indistinguishable from random by $\text{poly}(n)$ time, $O(n^{1.5-\varepsilon})$ space adversaries.
伪随机码的新构造
伪随机纠错码(PRC)是在 [CG24] 中提出的一种新的加密原语,可应用于生成式人工智能模型的水印。在这项工作中,我们研究了具有恒定错误率稳健性的 PRC 存在的假设条件。1.我们证明,如果[BKR23]中引入的种植超环假设和 Goldreich 的 PRG 版本的安全性都成立,那么就存在这样的公钥 PRC:没有有效的对手能以优于 $o(1)$ 的优势从随机中区分出多项式数量的编码词。2.我们重温了 [CG24] 的构造,并证明它可以基于比 [CG24] 更广泛的假设。为此,我们引入了种植 XOR 假设的弱化版本,我们称之为弱种植 XOR 假设,它可能会引起独立的兴趣。3.我们开始研究可安全对抗空间边界对抗的 PRC。我们展示了如何构造长度为 $O(n)$的秘钥 PRCs,这些 PRCs 在 $O(n^{1.5\varepsilon})$ 空间对手的 $/text{poly}(n)$ 时间内是 $/textit{unconditionally}$ 与随机密钥不可区分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信