Exploring LLMs for Malware Detection: Review, Framework Design, and Countermeasure Approaches

Jamal Al-Karaki, Muhammad Al-Zafar Khan, Marwan Omar
{"title":"Exploring LLMs for Malware Detection: Review, Framework Design, and Countermeasure Approaches","authors":"Jamal Al-Karaki, Muhammad Al-Zafar Khan, Marwan Omar","doi":"arxiv-2409.07587","DOIUrl":null,"url":null,"abstract":"The rising use of Large Language Models (LLMs) to create and disseminate\nmalware poses a significant cybersecurity challenge due to their ability to\ngenerate and distribute attacks with ease. A single prompt can initiate a wide\narray of malicious activities. This paper addresses this critical issue through\na multifaceted approach. First, we provide a comprehensive overview of LLMs and\ntheir role in malware detection from diverse sources. We examine five specific\napplications of LLMs: Malware honeypots, identification of text-based threats,\ncode analysis for detecting malicious intent, trend analysis of malware, and\ndetection of non-standard disguised malware. Our review includes a detailed\nanalysis of the existing literature and establishes guiding principles for the\nsecure use of LLMs. We also introduce a classification scheme to categorize the\nrelevant literature. Second, we propose performance metrics to assess the\neffectiveness of LLMs in these contexts. Third, we present a risk mitigation\nframework designed to prevent malware by leveraging LLMs. Finally, we evaluate\nthe performance of our proposed risk mitigation strategies against various\nfactors and demonstrate their effectiveness in countering LLM-enabled malware.\nThe paper concludes by suggesting future advancements and areas requiring\ndeeper exploration in this fascinating field of artificial intelligence.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The rising use of Large Language Models (LLMs) to create and disseminate malware poses a significant cybersecurity challenge due to their ability to generate and distribute attacks with ease. A single prompt can initiate a wide array of malicious activities. This paper addresses this critical issue through a multifaceted approach. First, we provide a comprehensive overview of LLMs and their role in malware detection from diverse sources. We examine five specific applications of LLMs: Malware honeypots, identification of text-based threats, code analysis for detecting malicious intent, trend analysis of malware, and detection of non-standard disguised malware. Our review includes a detailed analysis of the existing literature and establishes guiding principles for the secure use of LLMs. We also introduce a classification scheme to categorize the relevant literature. Second, we propose performance metrics to assess the effectiveness of LLMs in these contexts. Third, we present a risk mitigation framework designed to prevent malware by leveraging LLMs. Finally, we evaluate the performance of our proposed risk mitigation strategies against various factors and demonstrate their effectiveness in countering LLM-enabled malware. The paper concludes by suggesting future advancements and areas requiring deeper exploration in this fascinating field of artificial intelligence.
探索用于恶意软件检测的 LLM:回顾、框架设计和对策方法
由于大型语言模型(LLM)能够轻松生成和传播攻击,因此越来越多地用于创建和传播恶意软件,给网络安全带来了巨大挑战。一个提示就能启动一系列恶意活动。本文通过多方面的方法来解决这一关键问题。首先,我们全面概述了 LLM 及其在恶意软件检测中的作用。我们研究了 LLM 的五种具体应用:恶意软件 "巢穴"、基于文本的威胁识别、用于检测恶意意图的代码分析、恶意软件趋势分析以及非标准伪装恶意软件检测。我们的综述包括对现有文献的详细分析,并确立了安全使用 LLM 的指导原则。我们还介绍了一种分类方案,用于对相关文献进行分类。其次,我们提出了性能指标来评估 LLM 在这些情况下的有效性。第三,我们提出了一个风险缓解框架,旨在利用 LLM 预防恶意软件。最后,我们针对各种因素评估了我们提出的风险缓解策略的性能,并展示了这些策略在对抗 LLM 支持的恶意软件方面的有效性。论文最后提出了人工智能这一迷人领域未来的发展方向和需要深入探索的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信