LOCKEY: A Novel Approach to Model Authentication and Deepfake Tracking

Mayank Kumar Singh, Naoya Takahashi, Wei-Hsiang Liao, Yuki Mitsufuji
{"title":"LOCKEY: A Novel Approach to Model Authentication and Deepfake Tracking","authors":"Mayank Kumar Singh, Naoya Takahashi, Wei-Hsiang Liao, Yuki Mitsufuji","doi":"arxiv-2409.07743","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to deter unauthorized deepfakes and\nenable user tracking in generative models, even when the user has full access\nto the model parameters, by integrating key-based model authentication with\nwatermarking techniques. Our method involves providing users with model\nparameters accompanied by a unique, user-specific key. During inference, the\nmodel is conditioned upon the key along with the standard input. A valid key\nresults in the expected output, while an invalid key triggers a degraded\noutput, thereby enforcing key-based model authentication. For user tracking,\nthe model embeds the user's unique key as a watermark within the generated\ncontent, facilitating the identification of the user's ID. We demonstrate the\neffectiveness of our approach on two types of models, audio codecs and\nvocoders, utilizing the SilentCipher watermarking method. Additionally, we\nassess the robustness of the embedded watermarks against various distortions,\nvalidating their reliability in various scenarios.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to deter unauthorized deepfakes and enable user tracking in generative models, even when the user has full access to the model parameters, by integrating key-based model authentication with watermarking techniques. Our method involves providing users with model parameters accompanied by a unique, user-specific key. During inference, the model is conditioned upon the key along with the standard input. A valid key results in the expected output, while an invalid key triggers a degraded output, thereby enforcing key-based model authentication. For user tracking, the model embeds the user's unique key as a watermark within the generated content, facilitating the identification of the user's ID. We demonstrate the effectiveness of our approach on two types of models, audio codecs and vocoders, utilizing the SilentCipher watermarking method. Additionally, we assess the robustness of the embedded watermarks against various distortions, validating their reliability in various scenarios.
LOCKEY:模型认证和深度伪造追踪的新方法
本文提出了一种新方法,通过将基于密钥的模型验证与水印技术相结合,在生成模型中阻止未经授权的深度伪造并实现用户跟踪,即使用户可以完全访问模型参数。我们的方法是向用户提供模型参数,并附带用户专用的唯一密钥。在推理过程中,模型以密钥和标准输入为条件。有效的密钥会产生预期的输出,而无效的密钥则会触发降级输出,从而实现基于密钥的模型验证。在用户跟踪方面,该模型将用户的唯一密钥作为水印嵌入生成的内容中,便于识别用户的 ID。我们利用 SilentCipher 水印方法,在音频编解码器和视频编码器这两类模型上演示了我们的方法的有效性。此外,我们还评估了嵌入式水印对各种失真的鲁棒性,验证了它们在各种场景下的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信