Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments

Pub Date : 2024-08-19 DOI:10.1007/s10959-024-01344-2
Alexander Kalinin, Thilo Meyer-Brandis, Frank Proske
{"title":"Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments","authors":"Alexander Kalinin, Thilo Meyer-Brandis, Frank Proske","doi":"10.1007/s10959-024-01344-2","DOIUrl":null,"url":null,"abstract":"<p>We deduce stability and pathwise uniqueness for a McKean–Vlasov equation with random coefficients and a multidimensional Brownian motion as driver. Our analysis focuses on a non-Lipschitz continuous drift and includes moment estimates for random Itô processes that are of independent interest. For deterministic coefficients, we provide unique strong solutions even if the drift fails to be of affine growth. The theory that we develop rests on Itô’s formula and leads to <i>p</i>th moment and pathwise exponential stability for <span>\\(p\\ge 2\\)</span> with explicit Lyapunov exponents.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01344-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We deduce stability and pathwise uniqueness for a McKean–Vlasov equation with random coefficients and a multidimensional Brownian motion as driver. Our analysis focuses on a non-Lipschitz continuous drift and includes moment estimates for random Itô processes that are of independent interest. For deterministic coefficients, we provide unique strong solutions even if the drift fails to be of affine growth. The theory that we develop rests on Itô’s formula and leads to pth moment and pathwise exponential stability for \(p\ge 2\) with explicit Lyapunov exponents.

分享
查看原文
任意时刻麦金-弗拉索夫随机微分方程解的稳定性、唯一性和存在性
我们推导了具有随机系数和多维布朗运动驱动的麦金-弗拉索夫方程的稳定性和路径唯一性。我们的分析重点是非 Lipschitz 连续漂移,并包括与之相关的随机 Itô 过程的矩估计。对于确定性系数,即使漂移不具有仿射增长性,我们也能提供唯一的强解。我们所发展的理论建立在伊托公式的基础上,并通过明确的Lyapunov指数为\(p\ge 2\) 引出了pth矩和路径指数稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信