Positive Reinforced Generalized Time-Dependent Pólya Urns via Stochastic Approximation

Pub Date : 2024-09-04 DOI:10.1007/s10959-024-01366-w
Wioletta M. Ruszel, Debleena Thacker
{"title":"Positive Reinforced Generalized Time-Dependent Pólya Urns via Stochastic Approximation","authors":"Wioletta M. Ruszel, Debleena Thacker","doi":"10.1007/s10959-024-01366-w","DOIUrl":null,"url":null,"abstract":"<p>Consider a generalized time-dependent Pólya urn process defined as follows. Let <span>\\(d\\in \\mathbb {N}\\)</span> be the number of urns/colors. At each time <i>n</i>, we distribute <span>\\(\\sigma _n\\)</span> balls randomly to the <i>d</i> urns, proportionally to <i>f</i>, where <i>f</i> is a valid reinforcement function. We consider a general class of positive reinforcement functions <span>\\(\\mathcal {R}\\)</span> assuming some monotonicity and growth condition. The class <span>\\(\\mathcal {R}\\)</span> includes convex functions and the classical case <span>\\(f(x)=x^{\\alpha }\\)</span>, <span>\\(\\alpha &gt;1\\)</span>. The novelty of the paper lies in extending stochastic approximation techniques to the <i>d</i>-dimensional case and proving that eventually the process will fixate at some random urn and the other urns will not receive any balls anymore.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01366-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a generalized time-dependent Pólya urn process defined as follows. Let \(d\in \mathbb {N}\) be the number of urns/colors. At each time n, we distribute \(\sigma _n\) balls randomly to the d urns, proportionally to f, where f is a valid reinforcement function. We consider a general class of positive reinforcement functions \(\mathcal {R}\) assuming some monotonicity and growth condition. The class \(\mathcal {R}\) includes convex functions and the classical case \(f(x)=x^{\alpha }\), \(\alpha >1\). The novelty of the paper lies in extending stochastic approximation techniques to the d-dimensional case and proving that eventually the process will fixate at some random urn and the other urns will not receive any balls anymore.

分享
查看原文
通过随机逼近实现正向强化的广义时变波利亚乌恩
考虑一个广义的随时间变化的波利亚瓮过程,其定义如下。让 \(d\in \mathbb {N}\) 是瓮/颜色的数量。在每个时间 n,我们将 \(\sigma _n\) 个球按 f 的比例随机分配到 d 个瓮中,其中 f 是一个有效的强化函数。我们考虑了正强化函数的一般类别(假设有一些单调性和增长条件)。该类函数包括凸函数和经典的 \(f(x)=x^{\alpha }\), \(\alpha >1\).本文的新颖之处在于将随机逼近技术扩展到了 d 维情况,并证明了最终过程将固定在某个随机瓮上,而其他瓮将不再接收任何球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信