A Taxonomy of Miscompressions: Preparing Image Forensics for Neural Compression

Nora Hofer, Rainer Böhme
{"title":"A Taxonomy of Miscompressions: Preparing Image Forensics for Neural Compression","authors":"Nora Hofer, Rainer Böhme","doi":"arxiv-2409.05490","DOIUrl":null,"url":null,"abstract":"Neural compression has the potential to revolutionize lossy image\ncompression. Based on generative models, recent schemes achieve unprecedented\ncompression rates at high perceptual quality but compromise semantic fidelity.\nDetails of decompressed images may appear optically flawless but semantically\ndifferent from the originals, making compression errors difficult or impossible\nto detect. We explore the problem space and propose a provisional taxonomy of\nmiscompressions. It defines three types of 'what happens' and has a binary\n'high impact' flag indicating miscompressions that alter symbols. We discuss\nhow the taxonomy can facilitate risk communication and research into\nmitigations.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neural compression has the potential to revolutionize lossy image compression. Based on generative models, recent schemes achieve unprecedented compression rates at high perceptual quality but compromise semantic fidelity. Details of decompressed images may appear optically flawless but semantically different from the originals, making compression errors difficult or impossible to detect. We explore the problem space and propose a provisional taxonomy of miscompressions. It defines three types of 'what happens' and has a binary 'high impact' flag indicating miscompressions that alter symbols. We discuss how the taxonomy can facilitate risk communication and research into mitigations.
错误压缩分类学:为神经压缩图像取证做准备
神经压缩有可能彻底改变有损图像压缩。基于生成模型,最近的方案以高感知质量实现了前所未有的压缩率,但却损害了语义保真度。我们对问题空间进行了探索,并提出了压缩错误的临时分类法。它定义了三种 "发生了什么 "的类型,并有一个二进制的 "高影响 "标志,表示改变符号的压缩错误。我们讨论了该分类法如何促进风险交流和监控研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信