{"title":"Complex-plane singularity dynamics for blow up in a nonlinear heat equation: analysis and computation","authors":"M Fasondini, J R King, J A C Weideman","doi":"10.1088/1361-6544/ad700b","DOIUrl":null,"url":null,"abstract":"Blow-up solutions to a heat equation with spatial periodicity and a quadratic nonlinearity are studied through asymptotic analyses and a variety of numerical methods. The focus is on tracking the dynamics of the singularities in the complexified space domain all the way from the initial time until the blow-up time, which occurs when the singularities reach the real axis. This widely applicable approach gives forewarning of the possibility of blow up and an understanding of the influence of singularities on the solution behaviour on the real axis, aiding the (perhaps surprisingly involved) asymptotic analysis of the real-line behaviour. The analysis provides a distinction between small and large nonlinear effects, as well as insight into the various time scales over which blow up is approached. The solution to the nonlinear heat equation in the complex spatial plane is shown to be related asymptotically to a nonlinear ordinary differential equation. This latter equation is studied in detail, including its computation on multiple Riemann sheets, providing further insight into the singularities of blow-up solutions of the nonlinear heat equation when viewed as multivalued functions in the complex space domain and illustrating the potential intricacy of singularity dynamics in such (non-integrable) nonlinear contexts.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"5 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad700b","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Blow-up solutions to a heat equation with spatial periodicity and a quadratic nonlinearity are studied through asymptotic analyses and a variety of numerical methods. The focus is on tracking the dynamics of the singularities in the complexified space domain all the way from the initial time until the blow-up time, which occurs when the singularities reach the real axis. This widely applicable approach gives forewarning of the possibility of blow up and an understanding of the influence of singularities on the solution behaviour on the real axis, aiding the (perhaps surprisingly involved) asymptotic analysis of the real-line behaviour. The analysis provides a distinction between small and large nonlinear effects, as well as insight into the various time scales over which blow up is approached. The solution to the nonlinear heat equation in the complex spatial plane is shown to be related asymptotically to a nonlinear ordinary differential equation. This latter equation is studied in detail, including its computation on multiple Riemann sheets, providing further insight into the singularities of blow-up solutions of the nonlinear heat equation when viewed as multivalued functions in the complex space domain and illustrating the potential intricacy of singularity dynamics in such (non-integrable) nonlinear contexts.
期刊介绍:
Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest.
Subject coverage:
The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal.
Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena.
Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.