E. Marzec, S. Ajimura, A. Antonakis, M. Botran, M. K. Cheoun, J. H. Choi, J. W. Choi, J. Y. Choi, T. Dodo, H. Furuta, J. H. Goh, K. Haga, M. Harada, S. Hasegawa, Y. Hino, T. Hiraiwa, W. Hwang, T. Iida, E. Iwai, S. Iwata, H. I. Jang, J. S. Jang, M. C. Jang, H. K. Jeon, S. H. Jeon, K. K. Joo, D. E. Jung, S. K. Kang, Y. Kasugai, T. Kawasaki, E. J. Kim, J. Y. Kim, E. M. Kim, S. Y. Kim, W. Kim, S. B. Kim, H. Kinoshita, T. Konno, K. Kuwata, D. H. Lee, S. Lee, I. T. Lim, C. Little, T. Maruyama, S. Masuda, S. Meigo, S. Monjushiro, D. H. Moon, T. Nakano, M. Niiyama, K. Nishikawa, M. Noumachi, M. Y. Pac, B. J. Park, H. W. Park, J. B. Park, J. S. Park, J. S. Park, R. G. Park, S. J. M. Peeters, G. Roellinghoff, C. Rott, J. W. Ryu, K. Sakai, S. Sakamoto, T. Shima, C. D. Shin, J. Spitz, I. Stancu, F. Suekane, Y. Sugaya, K. Suzuya, M. Taira, Y. Takeuchi, W. Wang, J. Waterfield, W. Wei, R. White, Y. Yamaguchi, M. Yeh, I. S. Yeo, C. Yoo, I. Yu, A. Zohaib
{"title":"First Measurement of Missing Energy Due to Nuclear Effects in Monoenergetic Neutrino Charged Current Interactions","authors":"E. Marzec, S. Ajimura, A. Antonakis, M. Botran, M. K. Cheoun, J. H. Choi, J. W. Choi, J. Y. Choi, T. Dodo, H. Furuta, J. H. Goh, K. Haga, M. Harada, S. Hasegawa, Y. Hino, T. Hiraiwa, W. Hwang, T. Iida, E. Iwai, S. Iwata, H. I. Jang, J. S. Jang, M. C. Jang, H. K. Jeon, S. H. Jeon, K. K. Joo, D. E. Jung, S. K. Kang, Y. Kasugai, T. Kawasaki, E. J. Kim, J. Y. Kim, E. M. Kim, S. Y. Kim, W. Kim, S. B. Kim, H. Kinoshita, T. Konno, K. Kuwata, D. H. Lee, S. Lee, I. T. Lim, C. Little, T. Maruyama, S. Masuda, S. Meigo, S. Monjushiro, D. H. Moon, T. Nakano, M. Niiyama, K. Nishikawa, M. Noumachi, M. Y. Pac, B. J. Park, H. W. Park, J. B. Park, J. S. Park, J. S. Park, R. G. Park, S. J. M. Peeters, G. Roellinghoff, C. Rott, J. W. Ryu, K. Sakai, S. Sakamoto, T. Shima, C. D. Shin, J. Spitz, I. Stancu, F. Suekane, Y. Sugaya, K. Suzuya, M. Taira, Y. Takeuchi, W. Wang, J. Waterfield, W. Wei, R. White, Y. Yamaguchi, M. Yeh, I. S. Yeo, C. Yoo, I. Yu, A. Zohaib","doi":"arxiv-2409.01383","DOIUrl":null,"url":null,"abstract":"We present the first measurement of the missing energy due to nuclear effects\nin monoenergetic, muon neutrino charged-current interactions on carbon,\noriginating from $K^+ \\rightarrow \\mu^+ \\nu_\\mu$ decay-at-rest\n($E_{\\nu_\\mu}=235.5$ MeV), performed with the JSNS$^2$ liquid scintillator\nbased experiment. Towards characterizing the neutrino interaction, ostensibly\n$\\nu_\\mu n \\rightarrow \\mu^- p$ or $\\nu_\\mu$$^{12}\\mathrm{C}$ $\\rightarrow\n\\mu^-$$^{12}\\mathrm{N}$, and in analogy to similar electron scattering based\nmeasurements, we define the missing energy as the energy transferred to the\nnucleus ($\\omega$) minus the kinetic energy of the outgoing proton(s), $E_{m}\n\\equiv \\omega-\\sum T_p$, and relate this to visible energy in the detector,\n$E_{m}=E_{\\nu_\\mu}~(235.5~\\mathrm{MeV})-m_\\mu~(105.7~\\mathrm{MeV}) - E_{vis}$.\nThe missing energy, which is naively expected to be zero in the absence of\nnuclear effects (e.g. nucleon separation energy, Fermi momenta, and final-state\ninteractions), is uniquely sensitive to many aspects of the interaction, and\nhas previously been inaccessible with neutrinos. The shape-only, differential\ncross section measurement reported, based on a $(77\\pm3)$% pure\ndouble-coincidence KDAR signal (621 total events), provides an important\nbenchmark for models and event generators at 100s-of-MeV neutrino energies,\ncharacterized by the difficult-to-model transition region between\nneutrino-nucleus and neutrino-nucleon scattering, and relevant for applications\nin nuclear physics, neutrino oscillation measurements, and Type-II supernova\nstudies.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present the first measurement of the missing energy due to nuclear effects
in monoenergetic, muon neutrino charged-current interactions on carbon,
originating from $K^+ \rightarrow \mu^+ \nu_\mu$ decay-at-rest
($E_{\nu_\mu}=235.5$ MeV), performed with the JSNS$^2$ liquid scintillator
based experiment. Towards characterizing the neutrino interaction, ostensibly
$\nu_\mu n \rightarrow \mu^- p$ or $\nu_\mu$$^{12}\mathrm{C}$ $\rightarrow
\mu^-$$^{12}\mathrm{N}$, and in analogy to similar electron scattering based
measurements, we define the missing energy as the energy transferred to the
nucleus ($\omega$) minus the kinetic energy of the outgoing proton(s), $E_{m}
\equiv \omega-\sum T_p$, and relate this to visible energy in the detector,
$E_{m}=E_{\nu_\mu}~(235.5~\mathrm{MeV})-m_\mu~(105.7~\mathrm{MeV}) - E_{vis}$.
The missing energy, which is naively expected to be zero in the absence of
nuclear effects (e.g. nucleon separation energy, Fermi momenta, and final-state
interactions), is uniquely sensitive to many aspects of the interaction, and
has previously been inaccessible with neutrinos. The shape-only, differential
cross section measurement reported, based on a $(77\pm3)$% pure
double-coincidence KDAR signal (621 total events), provides an important
benchmark for models and event generators at 100s-of-MeV neutrino energies,
characterized by the difficult-to-model transition region between
neutrino-nucleus and neutrino-nucleon scattering, and relevant for applications
in nuclear physics, neutrino oscillation measurements, and Type-II supernova
studies.