A novel machine learning method to detect double-$Λ$ hypernuclear events in nuclear emulsions

Yan He, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yiming Gao, Ayumi Kasagi, Enqiang Liu, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Takehiko R. Saito, Shohei Sugimoto, Masato Taki, Yoshiki K. Tanaka, He Wang, Ayari Yanai, Junya Yoshida, Hongfei Zhang
{"title":"A novel machine learning method to detect double-$Λ$ hypernuclear events in nuclear emulsions","authors":"Yan He, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yiming Gao, Ayumi Kasagi, Enqiang Liu, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Takehiko R. Saito, Shohei Sugimoto, Masato Taki, Yoshiki K. Tanaka, He Wang, Ayari Yanai, Junya Yoshida, Hongfei Zhang","doi":"arxiv-2409.01657","DOIUrl":null,"url":null,"abstract":"A novel method was developed to detect double-$\\Lambda$ hypernuclear events\nin nuclear emulsions using machine learning techniques. The object detection\nmodel, the Mask R-CNN, was trained using images generated by Monte Carlo\nsimulations, image processing, and image-style transformation based on\ngenerative adversarial networks. Despite being exclusively trained on\n$\\prescript{6\\ }{\\Lambda\\Lambda}{\\rm{He}}$ events, the model achieved a\ndetection efficiency of 93.9$\\%$ for $\\prescript{6\\ }{\\Lambda\\Lambda}{\\rm{He}}$\nand 81.5$\\%$ for $\\prescript{5\\ }{\\Lambda\\Lambda}{\\rm{H}}$ events in the\nproduced images. In addition, the model demonstrated its ability to detect the\nNagara event, which is the only uniquely identified $\\prescript{6\\\n}{\\Lambda\\Lambda}{\\rm{He}}$ event reported to date. It also exhibited a proper\nsegmentation of the event topology. Furthermore, after analyzing 0.2$\\%$ of the\nentire emulsion data from the J-PARC E07 experiment utilizing the developed\napproach, six new candidates for double-$\\Lambda$ hypernuclear events were\ndetected, suggesting that more than 2000 double-strangeness hypernuclear events\nwere recorded in the entire dataset. This method is sufficiently effective for\nmining more latent double-$\\Lambda$ hypernuclear events recorded in nuclear\nemulsion sheets by reducing the time required for manual visual inspection by a\nfactor of five hundred.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method was developed to detect double-$\Lambda$ hypernuclear events in nuclear emulsions using machine learning techniques. The object detection model, the Mask R-CNN, was trained using images generated by Monte Carlo simulations, image processing, and image-style transformation based on generative adversarial networks. Despite being exclusively trained on $\prescript{6\ }{\Lambda\Lambda}{\rm{He}}$ events, the model achieved a detection efficiency of 93.9$\%$ for $\prescript{6\ }{\Lambda\Lambda}{\rm{He}}$ and 81.5$\%$ for $\prescript{5\ }{\Lambda\Lambda}{\rm{H}}$ events in the produced images. In addition, the model demonstrated its ability to detect the Nagara event, which is the only uniquely identified $\prescript{6\ }{\Lambda\Lambda}{\rm{He}}$ event reported to date. It also exhibited a proper segmentation of the event topology. Furthermore, after analyzing 0.2$\%$ of the entire emulsion data from the J-PARC E07 experiment utilizing the developed approach, six new candidates for double-$\Lambda$ hypernuclear events were detected, suggesting that more than 2000 double-strangeness hypernuclear events were recorded in the entire dataset. This method is sufficiently effective for mining more latent double-$\Lambda$ hypernuclear events recorded in nuclear emulsion sheets by reducing the time required for manual visual inspection by a factor of five hundred.
检测核乳剂中双-Λ$$超核事件的新型机器学习方法
利用机器学习技术,开发了一种新方法来检测核乳剂中的双-$/Lambda$超核事件。物体检测模型--掩模 R-CNN 是通过蒙特卡洛模拟、图像处理和基于生成对抗网络的图像风格转换生成的图像训练出来的。尽管该模型完全是在$prescript{6 }\{Lambda\Lambda}{rm{He}}$ 事件上训练的,但在生成的图像中,该模型对$prescript{6 }\{Lambda\Lambda}{rm{He}}$ 事件的检测效率达到了93.9%,对$prescript{5 }\{Lambda\Lambda}{rm{H}}$ 事件的检测效率达到了81.5%。此外,该模型还展示了其探测纳加拉事件的能力,这是迄今为止报告的唯一一个唯一确定的 $\prescript{6}}{Lambda\Lambda}{rm{He}$ 事件。它还展示了对事件拓扑结构的正确分割。此外,在利用所开发的方法分析了来自J-PARC E07实验的0.2%的全乳状液数据之后,我们检测到了六个新的候选双-$\Lambda$超核事件,这表明在整个数据集中记录了超过2000个双斯特朗超核事件。这种方法足以有效地发现更多记录在核乳液薄片中的潜在双-$/Lambda$超核事件,将人工目视检查所需的时间减少了500倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信