ANN-based mathematical model for improving the accuracy of liquid flow measurements at nuclear power plants

IF 0.4 4区 工程技术 Q4 NUCLEAR SCIENCE & TECHNOLOGY
A. M. Emelyanov, I. S. Nadezhdin, S. N. Liventsov
{"title":"ANN-based mathematical model for improving the accuracy of liquid flow measurements at nuclear power plants","authors":"A. M. Emelyanov,&nbsp;I. S. Nadezhdin,&nbsp;S. N. Liventsov","doi":"10.1007/s10512-024-01109-4","DOIUrl":null,"url":null,"abstract":"<div><p>A review of literature sources demonstrates the relevance of improving the accuracy of liquid flow measurements. To solve this problem, a neural-network model for liquid flow determination was developed and tested. The optimum structure and training parameters of an artificial neural network, such as the activation function, transfer function of the output layer, number of hidden layers and neurons in them, were selected. The training sample was generated using empirical expressions of GOST 8.586.1–2005 (ISO 5167–1:2022). The developed neural-network predictive model, which provides an uncertainty of calculations no greater than 0.32%, is intended for use as part of a software and hardware system for improving the accuracy of liquid flow measurements at nuclear industry enterprises.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"135 5-6","pages":"250 - 255"},"PeriodicalIF":0.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-024-01109-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A review of literature sources demonstrates the relevance of improving the accuracy of liquid flow measurements. To solve this problem, a neural-network model for liquid flow determination was developed and tested. The optimum structure and training parameters of an artificial neural network, such as the activation function, transfer function of the output layer, number of hidden layers and neurons in them, were selected. The training sample was generated using empirical expressions of GOST 8.586.1–2005 (ISO 5167–1:2022). The developed neural-network predictive model, which provides an uncertainty of calculations no greater than 0.32%, is intended for use as part of a software and hardware system for improving the accuracy of liquid flow measurements at nuclear industry enterprises.

Abstract Image

基于 ANN 的数学模型用于提高核电站液体流量测量的准确性
对文献资料的回顾表明,提高液体流量测量的准确性具有现实意义。为了解决这个问题,我们开发并测试了一种用于测定液体流量的神经网络模型。选择了人工神经网络的最佳结构和训练参数,如激活函数、输出层的传递函数、隐层数和其中的神经元。训练样本是根据 GOST 8.586.1-2005 (ISO 5167-1:2022)的经验表达式生成的。所开发的神经网络预测模型可提供不大于 0.32% 的计算不确定性,可作为软件和硬件系统的一部分,用于提高核工业企业液体流量测量的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atomic Energy
Atomic Energy 工程技术-核科学技术
CiteScore
1.00
自引率
20.00%
发文量
100
审稿时长
4-8 weeks
期刊介绍: Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信