{"title":"Multi-objective optimization of series-parallel system with mixed subsystems failure dependencies using NSGA-II and MOHH","authors":"Mohamed Arezki Mellal","doi":"10.1177/16878132241273526","DOIUrl":null,"url":null,"abstract":"In complex systems, failure dependencies play a crucial role in determining their overall performance. This paper explores the multi-objective optimization of series-parallel systems with mixed failure dependencies. By optimizing system cost and availability, the study aims to identify the most efficient redundancy and repair strategies. Two optimization algorithms, the non-dominated sorting genetic algorithm II (NSGA-II) and a novel multi-objective algorithm named the multi-objective hoopoe heuristic (MOHH), are utilized alongside constraint handling techniques to produce Pareto fronts. These fronts illustrate the trade-offs between cost and availability. Additionally, a fuzzy decision method is utilized to determine the best compromise solutions from each optimization technique. Comparing the results, NSGA-II consistently outperforms MOHH in providing better compromise solutions across five independent runs. However, MOHH demonstrates a better standard deviation in its performance.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241273526","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In complex systems, failure dependencies play a crucial role in determining their overall performance. This paper explores the multi-objective optimization of series-parallel systems with mixed failure dependencies. By optimizing system cost and availability, the study aims to identify the most efficient redundancy and repair strategies. Two optimization algorithms, the non-dominated sorting genetic algorithm II (NSGA-II) and a novel multi-objective algorithm named the multi-objective hoopoe heuristic (MOHH), are utilized alongside constraint handling techniques to produce Pareto fronts. These fronts illustrate the trade-offs between cost and availability. Additionally, a fuzzy decision method is utilized to determine the best compromise solutions from each optimization technique. Comparing the results, NSGA-II consistently outperforms MOHH in providing better compromise solutions across five independent runs. However, MOHH demonstrates a better standard deviation in its performance.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering