{"title":"A Research on Genetic Algorithm-Based Task Scheduling in Cloud-Fog Computing Systems","authors":"Wang Hao, Li Hui, Song Duanzheng, Zhu Jintao","doi":"10.3103/S0146411624700512","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the proliferating of IoT (Internet of things)-originated applications have generated huge amounts of data, which has put enormous pressure on infrastructures such as the network cloud. In this regard, scholars have proposed an architectural model for “cloud-fog” computing, where one of the obstacles to fog computing is how to allocate computing resources to minimize network resources. A heuristic-based TDCC (Time, distance, cost and computing-power) algorithm is proposed to optimize the task scheduling problem in this heterogeneous system for genetic algorithm-based “cloud-fog” computing, including execution time, operational cost, distance and total computing power resources. The algorithm uses evolutionary genetic algorithms as a research tool to combine the advantages of cloud computing, fog computing and genetic algorithms to achieve a balance between latency, cost, link length and computing power. In the hybrid computing task scheduling, this algorithm has a better balance than TCaS algorithm which only considers a single metric; this algorithm has a better adaptation value than traditional MPSO algorithm by 2.61%, BLA algorithm by 6.92% and RR algorithm by 33.39%, respectively. The algorithm is also flexible enough to match the user’s needs for high performance distance-cost-computing power, enhancing the effectiveness of the system.</p>","PeriodicalId":46238,"journal":{"name":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","volume":"58 4","pages":"392 - 407"},"PeriodicalIF":0.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATIC CONTROL AND COMPUTER SCIENCES","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0146411624700512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the proliferating of IoT (Internet of things)-originated applications have generated huge amounts of data, which has put enormous pressure on infrastructures such as the network cloud. In this regard, scholars have proposed an architectural model for “cloud-fog” computing, where one of the obstacles to fog computing is how to allocate computing resources to minimize network resources. A heuristic-based TDCC (Time, distance, cost and computing-power) algorithm is proposed to optimize the task scheduling problem in this heterogeneous system for genetic algorithm-based “cloud-fog” computing, including execution time, operational cost, distance and total computing power resources. The algorithm uses evolutionary genetic algorithms as a research tool to combine the advantages of cloud computing, fog computing and genetic algorithms to achieve a balance between latency, cost, link length and computing power. In the hybrid computing task scheduling, this algorithm has a better balance than TCaS algorithm which only considers a single metric; this algorithm has a better adaptation value than traditional MPSO algorithm by 2.61%, BLA algorithm by 6.92% and RR algorithm by 33.39%, respectively. The algorithm is also flexible enough to match the user’s needs for high performance distance-cost-computing power, enhancing the effectiveness of the system.
期刊介绍:
Automatic Control and Computer Sciences is a peer reviewed journal that publishes articles on• Control systems, cyber-physical system, real-time systems, robotics, smart sensors, embedded intelligence • Network information technologies, information security, statistical methods of data processing, distributed artificial intelligence, complex systems modeling, knowledge representation, processing and management • Signal and image processing, machine learning, machine perception, computer vision